

# Efficient Targeted Integration in Human T Cells with CRISPR-Cas9 for the Treatment of X-Linked Hyper-IgM Syndrome



**Carrie M. Margulies**<sup>1</sup>, Frank Buquicchio<sup>1</sup>, Giulia Schiroli<sup>2</sup>, Valentina Vavassori<sup>2,3</sup>, Meghna Kuppuraju<sup>1</sup>, Gregory Gotta<sup>1</sup>, Christopher Wilson<sup>1</sup>, Kiran Gogi<sup>1</sup>, Fred Harbinski<sup>1</sup>, Jennifer L. Gori<sup>1</sup>, Luigi Naldini<sup>2,3</sup>, Pietro Genovese<sup>2</sup>, Charles Albright<sup>1</sup>, Vic Myer<sup>1</sup>, Cecilia Cotta-Ramusino<sup>1</sup>

<sup>1</sup> Editas Medicine Inc., 11 Hurley St 02141 Cambridge, MA, US, <sup>2</sup> San Raffaele Telethon Institute for Gene Therapy, 20132 Milan, Italy, <sup>3</sup> University of Milano-Bicocca, 20900 Monza (MI), Italy

# Introduction

- X-linked Hyper-IgM Syndrome (X-HIGM) is a rare primary immunodeficiency characterized by recurrent infections.
- X-HIGM is caused by mutations in the *CD40LG* gene, with >90% of the patient mutations in exons 2-5 <sup>1-3</sup>.
- Expression of a corrective gene must be under the endogenous *CD40LG* promoter since constitutive expression of CD40L is causative of a lymphoproliferative phenotype in mice<sup>4</sup>.
- To address this unmet medical need, we have developed a cDNA replacement strategy to introduce a corrected cDNA of *CD40LG* exons 2-5 into intron 1.
- The objective of this study was to identify gRNA in

## **Evaluation of gRNAs for Targeted Integration and CD40L Expression**



*CD40LG* intron 1 that would allow for efficient integration and optimal expression of the corrective cDNA.

### CD40LG Editing & Experimental Strategy

Introduction of a cDNA in primary T cells containing a splice acceptor and codon optimized *CD40LG* exons 2-5 into intron 1 will allow for utilization of the *CD40LG* endogenous promoter and correction of any of the diverse patient mutations found in exons 2-5.



#### Corrected CD40LG Locus



#### **Experimental Timeline**



| gRNA        | Linyx | Hymav | Xovuz |
|-------------|-------|-------|-------|
| S. pyogenes |       | S. al | ireus |

CD40L

\*Expression of the integrated cDNA was determined as the ratio of the CD40L+ GFP+ cells to all GFP+ cells

- Tinyx (S.p.) and Hymav (S.a.) exhibited comparable and higher targeted integration than Xovuz (S.a.)
- There were no significant differences in expression of the integrated CD40L cDNA depending on location within Intron 1 and cDNA expression was comparable to endogenous expression

## Impact of Editing on T Cell Subpopulation Distributions



#### A similar distribution was observed 7 days post nucleofection of T cell terminal effector (T<sub>TE</sub>), effector memory (T<sub>EM</sub>), central memory (T<sub>CM</sub>) and stem cell memory (T<sub>SCM</sub>) subpopulations between edited cells and control

### Impact of Longer Homology Arms on Targeted Integration



 Longer homology arms showed a trend towards improved targeted integration compared to shorter homology arms at CD40LG locus

# **Evaluation of Specificity of Optimal gRNA**

**Guide-Seq Analysis** 

#### **Digenome Analysis**



| Expression a   | Expression   |  |  |
|----------------|--------------|--|--|
| T Cell         | GFP Positive |  |  |
| Subpopulations | Population   |  |  |

# **gRNA Screen and Confirmation**



- Among the 8 *S. pyogenes* and 30 *S. aureus* gRNA screened within *CD40LG* intron 1, 3 gRNA were identified and confirmed as top hits
- Top 3 gRNAs achieved >85% editing

<u>References:</u> (1) *Nature* **361**, 539-541, (2) *J Clin Immunol* **36**, 490-501, (3) *J Clin Immunol* **34**, 146-156, (4) *Nature Med* **4**, 1253-1260, (5) *Nat Biotech* **33**, 187-197, (6) *Nat Methods* **12**, 237-243

| gRNA  | Cas9 | Average<br>On-Target Editing | Average On-Target<br>Guide-Seq Reads | # Off-Targets<br>Detected | Average<br>Off-Target Editing | Average Off-Target<br>Guide-Seq Reads |
|-------|------|------------------------------|--------------------------------------|---------------------------|-------------------------------|---------------------------------------|
| Tinyx | S.p. | 90%                          | 9173                                 | 1                         | 0.3%                          | 116                                   |
| Hymav | S.a. | 90%                          | 9287                                 | 0                         | 0                             | 0                                     |

- Guide-Seq<sup>5</sup>, an unbiased cell-based assay, identified 1 off-target cut site for Tinyx and none for Hymav
- Digenome<sup>6</sup>, an *in vitro* cutting assay, revealed 205 potential off-target sites for Tinyx (S.p.) and only 10 for Hymav (S.a.)

### Conclusions

- 3 highly-effective gRNA were identified in intron 1 of CD40LG, 2 demonstrated high levels of targeted integration, and 1 showed an optimal specificity profile
- We achieved CD40L expression under the endogenous promoter at levels comparable to unedited healthy T cells by developing a targeted integration donor comprising an optimal splice acceptor and properly recoded cDNA
- Overall, we identified the optimal therapeutic candidate gRNA and donor configuration that allows for efficient targeted integration and expression of a corrective CD40LG cDNA, demonstrating its potential utility in treatment of patients with X-HIGM

# **Conflicts of Interest**

CMM, FB, GG, CW, KG, FH, CA, VM, and CCR are shareholders and employees of Editas Medicine. JLG is a shareholder of Editas Medicine. GS, VV, LN, and PG received research funding support from Editas Medicine.

editasmedicine.com