

Highly Efficient Single and Multi-gene Knockout with CRISPR-Cpf1 in T Cells for the Development of Improved Cell Therapies

John A. Zuris, Ramya Viswanathan, Katherine I. Loveluck, Thomas M. Swartjes, Melissa S. Chin, Justin W. Fang, Jennifer A. DaSilva, Fred Harbinski, Tongyao Wang, Gregory M. Gotta, Eugenio Marco, Christopher J. Wilson, G. Grant Welstead, Vic E. Myer, Cecilia A. Fernandez

Editas Medicine, Inc. | 11 Hurley Street, Cambridge, MA 02141

Introduction

Genome editing using RNA-guided nuclease technology has gained widespread attention for its potential to improve current cell therapies. The CRISPR-Cpf1 (also known as Cas12a) system is complementary to Cas9 with several distinct differences. Cpf1 features a single ~40 nucleotide crRNA and can target T- and C- rich PAMs with the WT and engineered PAM variants (1). The expanded targeting space, when compared to the purine rich PAMs of Cas9, makes it an attractive addition to enable broader targeting opportunities (2). Unlike SpCas9, Cpf1 makes a staggered cut in the DNA leaving behind a 4–5 nucleotide 5'-overhang, which could result in different editing outcomes.

Screening of T Cell Allogeneic-enabling Targets with Cpf1 Reveals Several Promising Hits

Multiple Gene Edits Allow the Generation of an (a) Allogeneic "Off-the-Shelf" T Cell Product

(b) Full Screen of T Cell Target Loci with AsCpf1 and Engineered **PAM Variants Led to Several Hits**

We screened multiple loci of therapeutic interest in T cells with AsCpf1 and its engineered RR and RVR PAM variants and optimized multiple components of the Cpf1 RNP assembly and nucleofection process to improve editing efficacy without compromising cell viability. Robust single (>95% KO) and multiplexed (80-90% double KO) gene disruption was observed with Cpf1 enzymes when delivered as an RNP.

Multiple published studies have shown that Cpf1 is highly intolerant to DNA:RNA mismatches in biochemical and cellular assays (3). We conducted specificity studies using *in silico* modeling, Digenome-seq, and GUIDE-seq, followed by targeted NGS sequencing. The results show that Cpf1 is a highly specific enzyme. Taken together, these data suggest that Cpf1 is both a robust and specific technology for developing T cell-based medicines.

Efficient Single and Multi-gene Knockout in Primary Human T Cells with Cpf1 RNPs

Background

Cpf1 Expands Targeting Space for Gene Editing

Variant	PAM	Frequency (bp)
SpCas9	NGG	1 in 8
SaCas9	NNGRRT	1 in 32
SaCas9 KKH	NNNRRT	1 in 8
AsCpf1	TTTV	1 in 43
AsCpf1 RR	TYCV/CCCC	1 in 18
AsCpf1 RVR	TATV	1 in 43

No Detectable Off-targets for Cpf1 TRAC, B2M, and CIITA Lead Candidate Guides in T Cells

Editas Workflow for (a) **Identification and Verification** of Potential Off-targets

B2M

TRAC

(b) **Specificity Assays Performed** for Top Cpf1 Candidates Guides for T Cell Targets

		Discovery Phase Verification Phase Phase	Guide (variant)	% Editing in T cells	<i>In silico</i> (off-by 1, 2, 3)	GUIDE-seq off-targets	Digenome- seq off- targets	Amp-seq verified off-targets		100	TRAC-2	B2M-1	CIITA-2
	Marine Contraction of the Contra	Gene editing agent(s)	B2M-1 (WT)	98.3	0, 1, 23	0	6	0	S	10-	Treatment ● No RNP		
			B2M-2 (RR)	90.0	0, 0, 13	0	0	0	N C		Plus RNP		
		In silico Biochemical Cellular "closest matches" (Digenome-Seg) (GUIDE-Seg)	TRAC-1 (WT)	94.5	0, 2, 14	0	0	0	رط و	1-			
Separate crRNA and trRNA	Naturally occurring ~40		TRAC-2 (RR)	97.8	0, 2, 18	0	9	0	litin				
that can be linked (~100 nt)	nt single guide RNA		CIITA-1 (WT)	81.0	0, 1, 10	0	TBD	0	% Ec	0.1	Limit of detection		
		Targeted sequencing assay panels in relevant cell type	CIITA-2 (RR)	88.9	0, 2, 21	0	TBD	0	01		Φ^{Φ}	•	φ
Predominantly blunt DNA	5' staggered DNA cut	Verified off-target sites	Control (SpCas9)	93.0	1, 4, 39	12	98	2	(0.01			
Refere	ences				Conc	lusion	S						
 Zetsche, Gootenberg et al. (2015) Cell 163:1117 Gao et al. (2017) Nature Biotechnology 35:789 Kleinstiver, Tsai et al. (2016) Nature Biotechnology 34:869 		 Optimisation of the Cpf1 protein and the el for RNP delivery led to improved editing at 	 Optimisation of the Cpf1 protein and the electroporation conditions There were no detectable off-targets observed by targeted amplicon sequencing of potential off-target sites from the <i>ir</i> 							silico,			
Acknowledgements We would like to especially thank Stephen Win Sequencing, Screening, Bioinformatics, DNA D Regulators, and Scientific Communication tear	s and Disclosures Iston and Chris Borges, as well as the Damage Response, Computational Biology,	Robust single, double, and triple KO of <i>TR</i>	AC, B2M,	and Cl	ITA	Dig	enome-s	eq, and Gl		eq o	n-larget assays	5.	

CIITA

No Detectable Off-targets Found by Targeted **Amplicon Sequencing**

B2M

CIITA

TRAC

(C)

