

Envisioning a Gene Editing Approach to Treat Inherited Blindness

Morgan Maeder

Why Gene Editing in the Eye?

Benefits of targeting inherited retinal diseases

Significant unmet medical need

- Vision loss has huge negative impact on quality of life
- Most inherited retinal disease patients have no therapeutic options

Proven delivery

Gene therapy using viral vectors has demonstrated success in the clinic

Confined, immuneprivileged location

- Limited immune response
- Any negative response easily detected and likely confined to the eye

RPE65 Validates Retinal Gene Therapy

Clinical trials for a broad range of retinopathies

Data compiled from Petit, Khanna and Punzo, Human Gene Therapy 2016

AAV-Mediated Retinal Gene Therapy

On-going field of research to optimize current approach

Sub-retinal delivery of appropriate AAV serotype for target cell encoding cDNA for gene augmentation

Hiroyuki Miyoshi et al. PNAS 1997

Challenge	Potential solutions	
Not all cell types are as easily transduced as RPE	Testing and optimization of non-AAV2 serotypes, modification and evolution of AAV	
Sub-retinal injections are difficult and associated with risk	Evolution of AAV serotypes that can transduce the retina via intravitreal injection	
Several disease-causing genes (ex. ABCA4, USH2A, CEP290) exceed the packaging limit of AAV	Lentivirus Trans-splicing AAV Gene Editing	
Dominant diseases are difficult to address	Gene Editing	

Leber Congenital Amaurosis

LCA10 caused by mutations in the CEP290 gene

- Group of heterogeneous inherited retinal dystrophies
- Early onset: infancy/early childhood
- CEP290 coding sequence = 7.5kb

Target: Residual Photoreceptors

- Early loss of rod photoreceptors
- Survival of the central island of cone photoreceptors
- Normal intracranial visual pathways

5

CEP290-Associated LCA10

Molecular mechanism of IVS26 mutation

CEP290 Single gRNA Gene Editing Approach

Single gRNA induces NHEJ to delete splice mutation

Gene editing with Cas9 and single gRNA targeted close to mutation

CEP290 Single gRNA Gene Editing Approach

Single gRNAs induce targeted indels

CEP290 Single gRNA Gene Editing Approach

Single gRNA-induced indels fail to efficiently delete IVS26 mutation

ͲͲĠͲልΑͲͲĠͲĠ₽Ġ₽ΑͲĊͲĊ₽ͲΑĊĊŢΑͲĊĊĊŢΑͲͲĠĠĊaĠŢĠŢĊͲŢ₽ĠŢŢŢŢŢŢŢ wt +24TTGTAATTGTGAGTATCTCATACC+24TATCCCTATTGGCAGTGTCTTAGTTTTATTTT TTGTAATTGTGAGTATCTCATACC-----GTGTCTTAGTTTTATTTT -14 -1 TTGTAATTGTGAGTATCTCATACC-ATCCCTATTGGCAGTGTCTTAGTTTTATTTT -5 TTGTAATTGTGAGTATCTCATACC----CTATTGGCAGTGTCTTAGTTTTATTTT -5 TTGTAATTGTGAGTATCTC----TATCCCTATTGGCAGTGTCTTAGTTTTATTTTT -2 TTGTAATTGTGAGTATCTCATA--TATCCCTATTGGCAGTGTCTTAGTTTTATTTT -26 TTGTAATTG-----GCAGTGTCTTAGTTTTATTTT -2+1 ͲͲĠͲልΑͲͲĠͲĠ₽Ġ₽Ġ₽Ċ₽Ċ₽Ŧ₽ͳ–ͲΑͲĊĊĊͲΑͲͲĠĠĊaĠŦĠŦĊͲŦAĠͲͲͲŦ₽ͲͲͲͲ TTGTAATTGTGAGTATCTCATACC---CCTATTGGCAGTGTCTTAGTTTTATTTT -4 TTGTAATTGTGAGTATCTCATA---TCCCTATTGGCAGTGTCTTAGTTTTATTTT -4

CEP290 Dual gRNA Gene Editing Approach

A targeted deletion approach to excise mutation

Gene editing with S. aureus Cas9 and two gRNAs flanking the mutation

CEP290 Dual gRNA Gene Editing Approach

A targeted deletion approach to excise mutation

gRNA Pairs Induce Targeted Deletion

Targeted deletion quantification in primary patient fibroblasts by ddPCR

Quantification of Targeted Deletion in IVS26 Fibroblasts Following Transfection with Cas9 and gRNAs

Targeted Deletion Corrects Splicing

Increased WT and decreased mut CEP290 mRNA measured by qRT-PCR

Quantification of WT and Mutant CEP290 Transcripts by qRT-PCR in IVS26 Fibroblasts

Targeted Deletion Corrects Splicing

Increased WT CEP290 protein expression by Western

Specificity Analysis of Candidate gRNAs

Combining GUIDE-Seq and amplicon sequencing to assess specificity

GUIDE-Seq in multiple human cell lines

Computational identification of closely matched sites

TTGCACGTACGTAAACAGGATGG TTGGACGTACGTAAACAGGATGG TTGCACGAACGTAAGCAGGATGG TTGCACGTACGTAAGCAGGATGG TAGCACGTACGTAAACAGGCTGG

Panel of sites analyzed by targeted NGS

Specificity Analysis of Candidate gRNAs

Combining GUIDE-Seq and amplicon sequencing to assess specificity

Target Site	On-target editing rate (% indels)	Off-Target Site	Off-Target Location	Off-target editing rate (% indels)
64	96.5	No off-targets identified		
323	94.8	No off-targets identified		
490	78.38	No off-targets identified		
492	93.76	No off-targets identified		
496	94.38	No off-targets identified		
504	72.09	No off-targets identified		
11	93.5	Chr17:55416466	Intron, MMD	0.03
		Chr2:10678496	Intron, NOL10	<0.01
		Chr3:71041347	Exon <i>, FOXP1</i>	0.27
502	93.34	Chr4:17268500	intergenic	8.81
		Chr10:46526823	intergenic	0.12
		Chr2:119441891	Intron, SCTR	<0.01
		Chr1:42755713	Intron, LEPRE1	<0.01
		Chr4:97307689	intergenic	0.05
		Chr1:247853709	intergenic	<0.01
		Chr2:2526357	intergenic	0.12

Is There a Benefit to a Single gRNA Approach?

Single gRNA frees up additional space in the AAV

Continued technology optimization

Additional elements that could be added to free space in AAV:

- Alternative promoters driving Cas9 expression
- Longer intron sequences downstream of promoter to increase Cas9 expression
- Additional gRNA for Cas9 inactivation

Cas9 Engineering to enable a single gRNA approach

Engineered Cas9s with altered PAM recognition broaden targeting range

LETTER

doi:10.1038/nature14592

Engineered CRISPR-Cas9 nucleases with altered PAM specificities

Benjamin P. Kleinstiver^{1,2,3}, Michelle S. Prew^{1,2}, Shengdar Q. Tsai^{1,2,3}, Ved V. Topkar^{1,2}, Nhu T. Nguyen^{1,2}, Zongli Zheng^{1,3,4}, Andrew P. W. Gonzales^{5,6,7}, Zhuyun Li⁵, Randall T. Peterson^{5,6,7}, Jing–Ruey Joanna Yeh^{5,8}, Martin J. Aryee^{1,3,9} & J. Keith Joung^{1,2,3}

nature biotechnology

Broadening the targeting range of *Staphylococcus aureus* CRISPR-Cas9 by modifying PAM recognition

Benjamin P Kleinstiver¹⁻⁴, Michelle S Prew¹⁻³, Shengdar Q Tsai¹⁻⁴, Nhu T Nguyen¹⁻³, Ved V Topkar¹⁻³, Zongli Zheng⁵ & J Keith Joung¹⁻⁴

LETTERS

Engineering Alternate PAM Recognition

Cas9 Engineering could enable a single gRNA approach

WT Cas9

Engineered Cas9 Variant

No PAMs close enough to mutation

Project lead by Barrett Steinberg

Novel PAM immediately adjacent to mutation

Engineering Alternate PAM Recognition

Cas9 Engineering could enable a single gRNA approach

In vitro cleavage assay of novel Cas9 variants at IVS26 splice donor

Project lead by Barrett Steinberg

What Can We Do with Extra Space in the AAV?

Single gRNA approach allows for inclusion of Cas9-inactivating gRNA

Long term transgene expression is ideal for standard gene therapy, but gene editing may benefit from a "hit and run" approach.

Self-Inactivating AAV-Cas9

Inclusion of Cas9-targeting gRNA decreases Cas9 expression

Initial experiment performed with 2 AAVs in HEK293 cells

Western blotting shows knockdown of Cas9 protein

T7E1 shows no effect on on-target editing efficiency

Project lead by Ari Friedland

Gene Editing Therapeutic for CEP290-LCA

Subretinal AAV delivers gene editing components for deletion of IVS26 mutation

On-going *In vivo* experiments to understand:1. Level of gene editing in photoreceptors2. Specificity

3. Tolerability

Acknowledgments

<u>iTeam:</u> Rina Mepani Sebastian Gloskowski Maxwell Skor McKensie Collins Ken Simon

Cas9 Regulation: Ari Friedland Reshica Baral Pankhuri Singhal

Protein Engineering: Barrett Steinberg Derek Cerchione

Sequencing & Bioinformatics: Gregory Gotta Hari Jayaram Eugenio Marco Luis Barrera Georgia Giannoukos Dawn Ciulla Tongyao Wang

And the entire Editas Team!

ddPCR Calibration

