

Highly Efficient Multi-Gene Knockout and Transgene Knock-in using CRISPR-Cas12a in Induced Pluripotent Stem Cells for the Generation of Engineered Cell Immunotherapies

JA Zuris, CM Margulies, R Viswanathan, JN Edelstein, R Pattali, KW Gareau, SN Scott, S Lele, AC Wilson, JI Moon, N Dilmac, AE Friedland, RA Morgan

John Zuris, Ph.D.

May 15th, 2020

John Zuris is an employee and shareholder at Editas Medicine

O Building a Genomic Medicine Leader

In Vivo CRISPR Medicines	Engineered Cell Medicines
Leverage AAV-mediated editing with SaCas9 into additional therapeutic areas	Develop best-in-class medicines for hemoglobinopathies using Cas12a and solid tumors using iPSC-derived cells

Maintain Best-in-class Platform & Intellectual Property, and Advance Organizational Excellence

I First in human CRISPR-Cas Gene Editing: EDIT-101 for LCA10

O AGN-151587 (EDIT-101): SaCas9 and 2 gRNAs in AAV to Correct LCA10-IVS26 Mutation

First patient dosed at Oregon Health & Science University (OHSU) Casey Eye Institute, in February 2020

O Building a Genomic Medicine Leader

In Vivo CRISPR Medicines	Engineered Cell Medicines
Leverage AAV-mediated editing with SaCas9 into additional therapeutic areas	Develop best-in-class medicines for hemoglobinopathies using Cas12a and solid tumors using iPSC-derived cells

Maintain Best-in-class Platform & Intellectual Property, and Advance Organizational Excellence

CO | There Are Many Nucleases to Choose from but for *Ex Vivo* Gene Editing Using AsCas12a Offers Several Potential Advantages to SpCas9

Editas general suite of nucleases

Variant	PAM	Frequency (bp)
SpCas9	NGG	1 in 8
SaCas9	NNGRRT	1 in 32
SaCas9 KKH	NNNRRT	1 in 8
AsCas12a	TTTV	1 in 43
AsCas12a RR	TYCV/CCCC	1 in 18
AsCas12a RVR	TATV	1 in 43
LbCas12a	TTTV	1 in 43

PAM sites are not limiting for general KO and large transgene KI applications

Small ~40 nt Cas12a guide is advantageous for manufacturing and sequence fidelity

References on AsCas12a target specificity: Kim et al. Nat Biotech 2016 Strohkendl et al. Mol Cell 2018 Swarts et al. Biochem Soc Trans 2019

AsCas12a is a more specific nuclease compared to SpCas9

From - Gotta et al. Genome Engineering: Frontiers of CRISPR/Cas Cold Spring Harbor, NY October 10, 2019

O | Engineered Cas12a (EngCas12a) Robustly Edits at Higher Efficiency than WT Cas12a and is Capable of Efficient Knock-in in T Cells

EngCas12a has superior activity

High knock-out across loci

High AAV6-mediated knock-in

Based on AsCas12a Ultra nuclease from IDT

Up to 40% double knock-in

EngCas12a is Used in EDIT-301, an Experimental **Medicine for Sickle Cell Disease**

80 HbF / (HbF + HbA) 60 40 52% 20 4% 0 Unedited **HBG1/2** Edited

8

2

Indels (%) 6

>90% editing in HSCs with EngCas12a

>50% HbF levels that persist after engraftment

From – De Dreuzy et al. Annual Meeting of the American Society of Hematology, Orlando. FL, December 9, 2019 © 2020 Editas Medicine 9

Have since verified this attribute in many other cell types

CO The Case for Developing an Allogeneic Medicine for Oncology

O Potential Cell Types for Allogeneic Cell Medicines for Cancer

O Potential Advantages of NK Cell Therapy for Oncology

Multiple tumor-recognition mechanisms; potential to combine with therapeutic antibodies to enhance ADCC

- Loss of MHC
- NKG2D
- NCRs
- CD16, etc...

NK cells induce adaptive immune responses against tumors

Souza-Fonseca-Guimaraes, et al., Trends in Immunology, 2019, Vol. 40, 142-158

From - Morgan et al. Keystone Emerging Cellular Therapies: Cancer and Beyond/Engineering the Genome February 10 Banff, Alberta 2020

To date, no evidence of GvHD in patients treated with allogeneic NK cells, unlike off-the-shelf T cells

Constant Co

From - Morgan et al. Keystone Emerging Cellular Therapies: Cancer and Beyond/Engineering the Genome February 10 Banff, Alberta 2020

13

 $O \mid Efficient KO of TGFBR2$ in Healthy Donor NK Cells with EngCas12a Leads to Expected Loss of TGF- β Signaling

Efficient Transgene Knock-in with EngCas12a in Healthy Donor NK Cells Enables Testing of New Biology

50% knock-in with EngCas12a

Tumor-targeting CAR knock-in enhances killing

EngCas12a Can Overcome the Editing Challenges in Creating Highly Engineered Cells for Targeting Solid Tumors

Summary of what we achieved with EngCas12a platform for potentially making medicines for oncology:

- EngCas12a retains intrinsic AsCas12a specificity advantage over SpCas9
- EngCas12a can robustly edit targets across cell types, including functional KO of TGFBR2 in NK cells
- EngCas12a can efficiently knock-in transgene cargos into T cells and NK cells

Modified from Saetersmoen et al. Seminars Immunopathology 2019

CO The Case for Developing an iPSC-Derived Medicine for Oncology

iPSC platform allows for highly edited cells

CO Knock-in of Many Transgenes Poses a Major Manufacturing Challenge

First key step in our iPSC editing platform:

Demonstrate highly efficient dsDNA break occurrence (i.e. knock-out) in order to maximize opportunity knock-in efficiency

I Highly Efficient Gene Editing in iPSCs Using EngCas12a

Additional advances to our iPSC editing platform:

- Made up to four edits at once and developed assays to assess which edit combinations show most promise
- Developed method to edit cells in a consistent manner so that editing and differentiation results are consistent
- Developed method to detect the possible infrequent occurrence of a translocation between two on-target edits

CO | Transgene Knock-in in an iPSC Requires Additional Considerations

Factors to consider while making a highly-edited iPSC-derived NK cell

Optimization is needed for plasmid-based transgene knock-in in iPSCs

CO Transgene Knock-in Efficiency Using Plasmid Approaches 20% in iPSCs

This knock-in efficiency should greatly reduce the number of iPSC clones that need to be analyzed

We Demonstrate that Edited iPSCs Can be Differentiated into Functional iPSC-Derived NK cells (iNKs) with Enhanced Tumor Killing Activity

Process of going from an edited iPSC to a differentiated iNK cell

iNK killing of SKOV3 cells

ENGCAS12A AS A POWERFUL GENE EDITING PLATFORM	 EngCas12a is more potent than Wild Type Cas12a but retains its strongly superior specificity compared to SpCas9 EngCas12a is capable of highly efficient KO and transgene KI across cell types
WHY NK CELLS FOR CANCER?	 Allogeneic NK cells are an effective cancer cell therapy without evidence of Graft vs Host Disease
	 Using EngCas12a we obtain robust editing to reduce TGF-β impact on NK cells
BUILDING A PLATFORM TO MAKE HIGHLY ENGINEERED IPSC-DERIVED NK CELLS	 iPSCs offer the potential to create Off-the-Shelf therapies at low costs Using the best nuclease possible can increase chances of finding clones with the desired edit and inserted construct Edited iPSCs can differentiate into iNKs with enhanced tumor killing ability

Editas Colleagues

iNK Program TeamSickle Program TeamHealthy Donor NK Program TeamDiscovery Biology TeamLead Discovery TeamBiological Development TeamBoulder Chemistry Team

Partners

Allergan Bristol-Myers Squibb BlueRock Therapeutics Sandhill Therapeutics Integrated DNA Technologies GenEdit