

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Abstract #1540

Robust Pre-Clinical Results and Large-Scale Manufacturing Process for EDIT-301: An Autologous Cell Therapy for the Potential Treatment of SCD

Edouard De Dreuzy,¹ Jack Heath,¹ Patricia Sousa,¹ Tusneem Janoudi,¹ Harry An,¹ Scott Hansen,² David K. Wood,² Charles F. Albright,¹ Sandra Teixeira,¹ Tamara Monesmith,¹ Kate Zhang,¹ and Kai-Hsin Chang¹

¹Editas Medicine, Cambridge, MA; ²Biomedical Engineering, University of Minnesota, Minneapolis, MN

Disclosures

- Employees and shareholders of Editas Medicine: E.D., J.H., P.S., T.J., H.A., C.F.A., S.T., T.M., K.Z., K-H.C.
- Nothing to disclose: S.H., D.K.W.

Introduction

EDIT-301

is an autologous cell therapy comprising CD34⁺ cells from patients with SCD (sickle cell disease) that are edited with CRISPR-Cas12a at the *HBG1* and *HBG2* promoters to induce the expression of anti-sickling fetal hemoglobin

Objectives:

To evaluate the edited CD34⁺ cell large-scale manufacturing process

CRISPR-Cas12a editing at the *HBG1* and *HBG2* promoter regions induces anti-sickling fetal hemoglobin (HbF) to treat SCD

Comparable editing and robust HbF induction in edited CD34⁺ cells from normal donors and patients with SCD

100 -80 Indels (%) 60 40 20 Λ Unedited E d ite d Unedited EDIT-301 Normal donor Patients with SCD n=3 n=4

Efficient editing

Robust ex vivo HbF expression

EDIT-301-derived RBCs have reduced sickling and improved rheological properties versus unedited SCD-derived RBCs

Successful development of edited CD34+ cell large-scale manufacturing process

Normal human donor

Consistent and robust large-scale manufacturing of edited CD34⁺ cells from normal donors

Efficient editing maintained in vivo

Bone Marrow 20 weeks post-infusion

Infusion of edited CD34⁺ cells manufactured on a large scale to NSG mice leads to polyclonal engraftment with no lineage skewing

n=46-48 mice/treatment

No lineage skewing after engraftment

Each color or color shade represents an individual indel signature.

Stable polyclonal engraftment

Conclusions

High levels of editing were achieved in CD34⁺ cells, leading to **potentially therapeutically relevant levels of HbF** expression

Significant reduction in sickling and **improved rheological properties** of EDIT-301(edited SCD)-derived RBCs

Consistent large-scale process suitable for use in clinical manufacturing showing multilineage, polyclonal engraftment, and persistence of high levels of editing *in vivo*

Plan to file Investigational New Drug application for EDIT-301 by end of 2020

Acknowledgments

- The authors would like to thank all of their Editas colleagues for helping to plan, perform, analyze, and present this work
- The authors would like to thank John Tisdale of NIH and Mark Walters of UCSF for access to CD34⁺ cells from patients with SCD
- Editorial assistance was provided by Hilary Wong, PhD, of 2 the Nth (Cheshire, UK), funded by Editas Medicine