Robust Pre-Clinical Results and Large-Scale Manufacturing Process for EDIT-301: An Autologous Cell Therapy for the Potential Treatment of SCD

Edouard De Dreuzy, ${ }^{1}$ Jack Heath, ${ }^{1}$ Patricia Sousa, ${ }^{1}$ Tusneem Janoudi, ${ }^{1}$ Harry An, ${ }^{1}$ Scott Hansen, ${ }^{2}$ David K. Wood, ${ }^{2}$ Charles F. Albright, ${ }^{1}$ Sandra Teixeira, ${ }^{1}$ Tamara Monesmith, ${ }^{1}$ Kate Zhang, ${ }^{1}$ and Kai-Hsin Chang ${ }^{1}$
${ }^{1}$ Editas Medicine, Cambridge, MA; ${ }^{2}$ Biomedical Engineering, University of Minnesota, Minneapolis, MN

Disclosures

- Employees and shareholders of Editas Medicine:
E.D., J.H., P.S., T.J., H.A., C.F.A., S.T., T.M., K.Z., K-H.C.
- Nothing to disclose:
S.H., D.K.W.

Introduction

is an autologous cell therapy comprising CD34+ cells
EDIT-301 from patients with SCD (sickle cell disease) that are edited with CRISPR-Cas12a at the HBG1 and HBG2 promoters to induce the expression of anti-sickling fetal hemoglobin

Objectives:

To demonstrate the function and phenotype of edited red blood cells (RBCs) derived from EDIT-301 in vitro

To evaluate the edited CD34+ cell large-scale manufacturing process

CRISPR-Cas12a editing at the HBG1 and HBG2 promoter regions induces anti-sickling fetal hemoglobin (HbF) to treat SCD

Comparable editing and robust HbF induction in edited CD34+ cells from normal donors and patients with SCD

Efficient editing

Robust ex vivo HbF expression

EDIT-301-derived RBCs have reduced sickling and improved rheological properties versus unedited SCD-derived RBCs

When placed in microfluidic channels, mimicking blood flow in microvasculature, at a range of oxygen levels

Unedited SCD-derived RBCs
EDIT-301 (edited SCD)-derived RBCs

Successful development of edited CD34+ cell large-scale manufacturing process

Consistent and robust large-scale manufacturing of edited CD34+ cells from normal donors

Efficient editing maintained in vivo

Infusion of edited CD34+ cells manufactured on a large scale to NSG mice leads to polyclonal engraftment with no lineage skewing

No lineage skewing after engraftment

Female NSG mice bone marrow 20 weeks post-infusion

Stable polyclonal engraftment

Blood draws over 20 weeks

Conclusions

High levels of editing were achieved in CD34+ cells, leading to potentially therapeutically relevant levels of HbF expression

Significant reduction in sickling and improved rheological properties of EDIT-301 (edited SCD)-derived RBCs

Consistent large-scale process suitable for use in clinical manufacturing showing multilineage, polyclonal engraftment, and persistence of high levels of editing in vivo

Plan to file Investigational New Drug application for EDIT-301 by end of 2020

Acknowledgments

- The authors would like to thank all of their Editas colleagues for helping to plan, perform, analyze, and present this work
- The authors would like to thank John Tisdale of NIH and Mark Walters of UCSF for access to CD34+ cells from patients with SCD
- Editorial assistance was provided by Hilary Wong, PhD, of 2 the Nth (Cheshire, UK), funded by Editas Medicine

