Advances Toward a Dual AAV CRISPR-Cas9-based "Knockout and Replace" Strategy to Treat **Rhodopsin-Associated Autosomal Dominant Retinitis Pigmentosa**

-1 -2 -3 -1 -2 -3

Frameshift indels rescued P23H cytotoxicity in vitro.

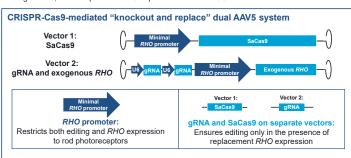
aRNA 59, but not aRNA 70, is NHP cross-reactive.

In-frame edits with gRNA 59 may generate a

dominant-negative RHO allele.

POSTER 3547177

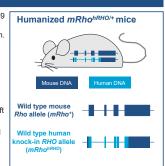
Mariacarmela Allocca, Chi-Hsiu Liu, Radhika Nayak, Andrea Pinilla, Abhishek Dass, Ben Diner, Thomas Tallo, Eugenio Marco, Georgia Giannoukos, Shengfang Jin, Kate Zhang, Charles Albright, Deepak Reyon

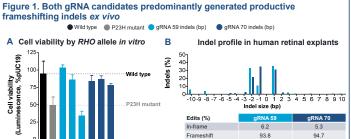

Editas Medicine, Inc., Cambridge, MA, USA

OBJECTIVE

To identify a lead guide RNA (gRNA) and the optimal ratio of the dual adeno-associated virus (AAV) system in a CRISPR-Cas9-mediated therapeutic strategy to knock out the endogenous rhodopsin (RHO) gene in patients with RHO-associated autosomal dominant retinitis pigmentosa (RHO-adRP) and replace it with an exogenous functional RHO gene.

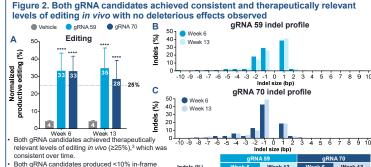
INTRODUCTION


- adRP, a retinal disease that results in blindness due to photoreceptor degeneration, is most commonly caused by mutations in the RHO gene, where over 150 autosomal dominant mutations have been identified.
- CRISPR-Cas9 editing using a dual AAV system can simultaneously knock out the endogenous RHO gene (mutant or wild type), and replace it with an exogenous functional RHO gene.
- We have previously identified two potent, highly specific guide RNAs (gRNAs), gRNA 59 and qRNA 70, and an optimized RHO expression vector in vitro.2


METHODS

CONCLUSIONS

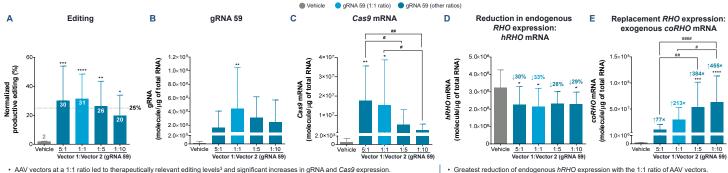
- The cytotoxicity of RHO alleles based on gRNA 59 and 70 indels in each open-reading-frame was assessed using an in vitro overexpression system.
- Next-generation sequencing (NGS) was used to quantify in-frame vs frameshift indels after transduction of human retinal explants with the dual AAV system.
- Humanized mRhohRHO/+ mice were injected with the dual AAV system:
 - On-target editing and in-frame vs frameshift indels were quantified using NGS.
 - On-target editing (NGS), Cas9, gRNA, and RHO expression levels were quantified for four different AAV ratios



RESULTS

- >93% editing events resulted in frameshift indels ex vivo, suggesting minimal risk of generating a dominant-negative RHO allele through in-frame
- ability (%) in cells with the wild type RHO allele (black) and the P23H RHO allele (gray).

 sxplants transduced with the dual ANV system; NGS performed at 4 weeks. n=30
 associated visus, b, base pair; RPAN, guide RNA: NSS, next,generation sequencing; NHP, non-human primate; RHO, rhodopsir



indels, which was consistent over time, suggesting that in-frame editing was unlikely and did not lead to deleterious effects in vivo.

2.5 27 3.0 Total in-frame 5.6

mRitio^{18000*} mice injected with the dual AAV system at a 1:1 ratio. NGS performed at 6- and 13-weeks post-injection (m⁻6 for vehicle: n=14 for gRNA 59 and gRNA 70).
(A) Mean (SO) is presented. Normalized to transduced area. """p-0.0001 vehicle: Black dotted line indicates the threshold to achieve therappolically relevant levels of editing (225%) ²
AAV. adeno-associated virus. [but see any GNA, quide RNA 40PHO, human RM-01 alies, mRho, mouse Rhoseles NDS, rest generation sequencings (PMPRo) northoppins; SO, standard of the second properties of the second prope

Figure 3. Clinically relevant editing levels while maximizing RHO replacement expression levels were achieved by injecting the dual AAV vectors at a 1:1 ratio

REFERENCES

- · gRNA and Cas9 mRNA levels strongly correlated with editing at all ratios.

- Replacement RHO expression increased with increasing dose of Vector 2.

Both gRNA 59 and 70 achieved clinically relevant editing levels with minimal risk of producing novel dominant-negative alleles, gRNA 59 has the additional benefit of being NHP cross-reactive.

- At a 1:1 ratio, the dual AAV system demonstrated clinically relevant editing levels, significant increases in gRNA and Cas9 mRNA levels, the highest level of endogenous hRHO knockdown, and >200-fold higher levels of replacement RHO expression compared with the vehicle control
- In vivo characterization of this CRISPR-Cas9 dual AAV system as a therapeutic strategy for RHO-adRP will proceed with gRNA 59 as the lead guide and 1:1 as the optimal ratio for the dual AAV system.

DISCLOSURES

Employees and shareholders of Editas Medicine: M.A., C-H.L. Athanasiou D. et al. Prog Retin Eve Res 2018:62:1–23 R.N., A.P., A.D., B.D., T.T., E.M., G.G., S.J., K.Z., D.R. 2. Dass A, et al. ASGCT Annual Meeting 2020:Poster 226 Former employee of Editas Medicine: C.A. Cideciyan AV, et al. PNAS 1998;95:7103-8

The authors would like to thank all of their Editas colleagues for helping to plan, perform, analyze, and present this work. Editorial assistance was provided by Hilary Wong, PhD, of 2 the Nth (Cheshire, UK), This work was