The development of CRISPR-based medicines for the treatment of ocular diseases

Heather MacLeod, Associate Director, Discovery Biology

ASGCT 2021
Moving Genome Editing to the Clinic: From Technology to Therapeutics

May 10, 2021
Editas Medicine’s powerful engine

Differentiated platform: the *only* company with multiple proprietary CRISPR editing systems

Unparalleled IP: broadest and deepest CRISPR IP portfolio

Ability to develop widest range of transformational genomic medicines for serious diseases
Preclinical development of gene editing experimental medicine EDIT-101

Introduction: Leber congenital amaurosis type 10 (LCA10) disease

Guide RNA selection: Editing with lead guide RNA combination

Specificity assessment: On-target and off-target editing in relevant tissues

Safety and tolerability: Mouse and NHP study to evaluate efficacy, safety, and tolerability of EDIT-101

Conclusion: Clinical development of EDIT-101
LCA10 is caused by loss-of-function mutations in the CEP290 protein

- The CEP290 gene encodes a 2479 amino acid, 290 kDa protein that localizes to the photoreceptor connecting cilium.
- Required for the protein trafficking critical to outer segment regeneration and phototransduction.
- Restoring CEP290 protein expression in surviving foveal photoreceptors may improve vision in patients with LCA10.

Gene repairs at c.2991+1655A>G mutation of CEP290 to full functional protein

LCA10 disease

Gene editing therapeutic concept

DNA

<table>
<thead>
<tr>
<th>Exon 26</th>
<th>Exon 27</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVS26</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>G</td>
</tr>
</tbody>
</table>

mRNA

<table>
<thead>
<tr>
<th>Exon 26</th>
<th>Exon 27</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Protein

- p.Cys998X prematurely truncated and non-functional CEP290

Gene editing therapeutic concept

- **Inversion**
 - IVS26
 - G

- **Deletion**
 - Exon 26
 - Exon 27

- Full-length, functional CEP290
Editing causes inversions, deletions, and indels

Inversion

Deletion

Exon 26

Exon 27

indels

Large inversions

18

Large deletions

40

Small indels

17
Targeted deletions and inversions correct splicing

Correct splicing as determined by GFP expression

U2OS Cell Line

- **WT**
- **IVS26 mutant**
- **Deletion**
- **Inversion**

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Relative GFP expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>19.0 ± 0.5</td>
</tr>
<tr>
<td>IVS26 mutant</td>
<td>10.5 ± 0.3</td>
</tr>
<tr>
<td>Deletion</td>
<td>17.0 ± 0.4</td>
</tr>
<tr>
<td>Inversion</td>
<td>18.0 ± 0.6</td>
</tr>
</tbody>
</table>

Ex26/27, exon 26/27; SA, splice acceptor; SD, splice donor; WT, wild type

© 2021 Editas Medicine
Editing corrects CEP290 splicing thereby restoring mRNA and protein expression

CEP290 mRNA expression

Relative CEP290 expression (normalized to ACTB)

- WT Mutant
- WT Mutant
- Edited (g323 + g64)

<table>
<thead>
<tr>
<th>Relative CEP290 expression</th>
<th>Ctrl</th>
<th>Edited (g323 + g64)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
<td>0.0003</td>
<td>0.0005</td>
</tr>
<tr>
<td>0.0002</td>
<td>0.0004</td>
<td>0.0006</td>
</tr>
<tr>
<td>0.0003</td>
<td>0.0005</td>
<td>0.0007</td>
</tr>
<tr>
<td>0.0004</td>
<td>0.0006</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

p-values:
- p=0.07
- p=0.01
- p=0.03

CEP290 protein expression

- Ctrl
- Edited (g323 + g64)

- CEP290
- GAPDH

Ctrl, control

© 2021 Editas Medicine
Comprehensive specificity assessment

Discovery

- **In silico modeling**
 Predict where an enzyme can cut

- **Digenome-Seq**
 Find where an enzyme cuts naked DNA

- **GUIDE-Seq**
 Find where an enzyme cuts DNA in context of a cell

Verification

- **Targeted sequencing in relevant cells by NGS**
 Measures effect of enzyme activity on “discovered” sites

- **Risk assessment and mitigation as needed**
 Off-target

To identify gRNAs without measurable off-target cut
Guide RNAs g323 and g64 demonstrated highly specific on-target cutting in a biochemical assay.

Digeneome-Seq Assay
- gRNA + Cas9
- Genomic DNA
- Whole genome sequencing

Sequence analysis (g323 on-target example)
- Enriched fragments on either side of cut site

Graph
- Number of cut sites including on-target site
 - g323 (SaCas9): ~100× on:off-target window
 - g64 (SaCas9): >100× on:off-target window
 - Positive control (Emx1 [SpCas9]): 272
 - Negative control (No RNP): 0

RNP, ribonucleoprotein; SaCas9, Staphylococcus aureus Caspase 9; SpCas9, Streptococcus pyogenes Caspase 9.
EDIT-101: an AAV5 vector with two gRNAs and DNA encoding Cas9 injected sub-retinally

DNA packaged in AAV5 vector with tropism for photoreceptors

Localized subretinal injection

Two specific guide RNAs (g323 and g64) direct the SaCas9 protein to the c.2991+1655A>G mutation site

GRK1 promoter restricts SaCas9 protein expression to photoreceptor cells

SaCas9 protein cuts the DNA at either end of the c.2991+1655A>G mutation only in photoreceptor cells

Localized delivery, AAV5 tropism, specific guide RNAs, and restricted Cas9 expression facilitate targeted editing by EDIT-101 in photoreceptor cells
Human eyes 3–5 hours postmortem

Remove neural retina

3 mm punches

Plate 3 mm punches with photoreceptor-side down in 24-well format

EDIT-101

EDITing and specificity analysis in human retinal explant model

Morphology: Histology with GFP vector

Editing: UDiTaS to measure editing

Specificity: Specificity verification panel

Harvest 28 days post-transduction
Confirmation of editing and quantitation in human retinal explant model

28 days post-transduction

AAV5-GRK1-GFP (5e11 vg)

EDIT-101 (5e11 vg)

INL, inner nuclear layer; ONL, outer nuclear layer

© 2021 Editas Medicine
Specificity verification in retinal explants confirmed no off-target sites

The presence of on-target sites together with the absence of off-target sites confirmed that the guide RNAs were highly active and specific to the human CEP290 target sequence.
Efficient transduction and editing of mouse retina by subretinal delivery of EDIT-101

HuCEP290-IVS26 KI mice

Over 80% of productive editing was achieved in the transduced photoreceptors
Efficient transduction of photoreceptor cells with EDIT-101 in HuCEP290-IVS26 KI mice

ISH of AAV vector genome

IHC of Cas9 protein

Counter-stained with rhodopsin

IHC of Cas9 in the area of AAV ISH showed essentially all photoreceptors in the bleb region were transduced

IHC, immunohistochemistry; ISH, in situ hybridization
Both gRNA and Cas9 mRNA were highly expressed in the mouse retina

Adapted from Nature Medicine, Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10, 25, 2019;229–233, Maeder ML, et al, © The Author(s), under exclusive license to Springer Nature America, Inc., with permission of Springer. From: Fig. 2 | In vivo editing in HuCEP290 IVS26 knock-in mice
EDIT-101 demonstrated rapid and stable gene editing in HuCEP290-IVS26 KI mice

Total editing rates with EDIT-101 were maintained over 40 weeks post-injection

The optimal dose of EDIT-101 in the LCA10 mouse model appeared to be $\sim 10^{12}$ vg/mL

EDIT-101 achieved productive editing rates in a dose-dependent manner in an LCA10 mouse model
Retinal structural differences between mice and NHPs

Monkey retina
- **Macula**
- **Photoreceptors**: 25–30% of cells
- **Most foveal photoreceptors are cones**
- **8 mm retinal punch covering most of the bleb used for analysis but only photoreceptors (25–30%) express GRK1**

Mouse retina
- **No macula**
- **Photoreceptors**: 85–90% of cells
- **97% of photoreceptors are rods**
- **Entire retina collected for analysis but only 30% of neural retina transduced with 1 µL AAV5**

IF, immunofluorescence; IPL, inner plexiform layer; OPL, outer plexiform layer; POS, photoreceptor outer segments
EDIT-101 had a similar dose response in mice and NHPs

At maximally tolerated doses, >50% editing is observed in NHPs and was not distinguishable from placebo.

EDIT-101 was well tolerated in NHPs and was not distinguishable from placebo.
BRILLIANCE: A Phase 1/2 open-label study of EDIT-101 in adult and pediatric patients

Objective:
To evaluate the safety, tolerability, and efficacy of EDIT-101 in patients with LCA10

Inclusion criteria
- Adult (≥18 years) or pediatric (3–17 years) patients
- LCA10 caused by c.2991+1655A>G mutation in the CEP290 gene
- BCVA 0.4 logMAR (20/50 Snellen equivalent)
- Failed mobility course at maximum level of difficulty

Phase 1/2, open-label, single ascending dose study (NCT03872479)

Primary outcomes: Safety
- Adverse events
- Dose-limiting toxicities

Key secondary outcomes:
- Maximum tolerated dose
- Visual navigation (Δ Mobility course score)
- BCVA (Δ LogMAR)
- Δ Macula thickness
- Pupillometry and microperimetry
- Light and contrast sensitivity
- Δ Color vision score
- Quality of life

Adult doses:
- Low dose, 6x10^{11} (n=2)
- Middle dose, 1.1x10^{12} (n=4)
- High dose, 3x10^{12} (n=4)

Pediatric doses:
- Middle dose (n=4)
- High dose (n=4)

Follow up visits:
- Month 0, 3, 6, 9, 12

“Progress Toward a Clinical Trial of CRISPR/Cas9-Mediated Genome Editing for CEP290-Associated Retinal Degeneration” © 2021 Editas Medicine
Acknowledgments

Shannon Boye
Sanford Boye
Tyler McCullough

Vijaya L. Simhadri
Joseph McGill
Shane McMahon
Zuben E. Sauna

Paul Gamlin
C. Douglas Witherspoon