

The development of CRISPR-based medicines for the treatment of ocular diseases

Heather MacLeod, Associate Director, Discovery Biology

ASGCT 2021 Moving Genome Editing to the Clinic: From Technology to Therapeutics editas

May 10, 2021

Editas Medicine's powerful engine

Differentiated platform: the *only* company with multiple proprietary CRISPR editing systems

Unparalleled IP: broadest and deepest CRISPR IP portfolio Ability to develop widest range of transformational genomic medicines for serious diseases

Preclinical development of gene editing experimental medicine EDIT-101

Introduction: Leber congenital amaurosis type 10 (LCA10) disease

Guide RNA selection: Editing with lead guide RNA combination

Specificity assessment: On-target and off-target editing in relevant tissues

Safety and tolerability: Mouse and NHP study to evaluate efficacy, safety, and tolerability of EDIT-101

Conclusion: Clinical development of EDIT-101

LCA10 is caused by loss-of-function mutations in the CEP290 protein

Gene repairs at c.2991+1655A>G mutation of CEP290 to full functional protein

Editing causes inversions, deletions, and indels

Targeted deletions and inversions correct splicing

Correct splicing as determined by GFP expression

© 2021 Editas Medicine

Ex26/27, exon 26/27; SA, splice acceptor; SD, splice donor; WT, wild type

Editing corrects CEP290 splicing thereby restoring mRNA and protein expression

CEP290 protein expression

Ctrl, control

Comprehensive specificity assessment

Guide RNAs g323 and g64 demonstrated highly specific on-target cutting in a biochemical assay

RNP, ribonucleoprotein; SaCas9, Staphylococcus aureus Caspase 9; SpCas9, Streptococcus pyogenes Caspase 9

EDIT-101: an AAV5 vector with two gRNAs and DNA encoding Cas9 injected sub-retinally

Localized delivery, AAV5 tropism, specific guide RNAs, and restricted Cas9 expression facilitate targeted editing by EDIT-101 in photoreceptor cells

Editing and specificity analysis in human retinal explant model

Confirmation of editing and quantitation in human retinal explant model

28 days post-transduction

INL, inner nuclear layer; ONL, outer nuclear layer

Specificity verification in retinal explants confirmed no off-target sites

The presence of on-target sites together with the absence of off-target sites confirmed that the guide RNAs were highly active and specific to the human CEP290 target sequence

Efficient transduction and editing of mouse retina by subretinal delivery of EDIT-101

HuCEP290-IVS26 KI mice

Over 80% of productive editing was achieved in the transduced photoreceptors

Efficient transduction of photoreceptor cells with EDIT-101 in HuCEP290-IVS26 KI mice

ISH of AAV vector genome

IHC of Cas9 protein

IHC of Cas9 in the area of AAV ISH showed essentially all photoreceptors in the bleb region were transduced

Both gRNA and Cas9 mRNA were highly expressed in the mouse retina

Adapted from Nature Medicine, Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10, 25, 2019;229–233, Maeder ML, et al, © The Author(s), under exclusive license to Springer Nature America, Inc., with permission of Springer. From: Fig. 2 | In vivo editing in HuCEP290 IVS26 knock-in mice

© 2021 Editas Medicine

EDIT-101 demonstrated rapid and stable gene editing in HuCEP290-IVS26 KI mice

EDIT-101 achieved productive editing rates in a dose-dependent manner in an LCA10 mouse model

Retinal structural differences between mice and NHPs

AAV5-cynoCEPgRNAs-GRK1-SaCas9

- Macula
- Photoreceptors: 25–30% of cells
- Most foveal photoreceptors are cones
- 8 mm retinal punch covering most of the bleb used for analysis but only photoreceptors (25–30%) express GRK1

- No macula
- Photoreceptors: 85–90% of cells
- 97% of photoreceptors are rods
- Entire retina collected for analysis but only 30% of neural retina transduced with 1 µL AAV5

EDIT-101 had a similar dose response in mice and NHPs

At maximally tolerated doses, >50% editing is observed EDIT-101 was well tolerated in NHPs and was not distinguishable from placebo

BRILLIANCE: A Phase 1/2 open-label study of EDIT-101 in adult and pediatric patients

BCVA, best corrected visual acuity

Presented by Pierce E, et al. Retinal Cell and Gene Therapy Symposium (April 26, 2019). "Progress Toward a Clinical Trial of CRISPR/Cas9-Mediated Genome Editing for CEP290-Associated Retinal Degeneration"

© 2021 Editas Medicine

Acknowledgments

Vijaya L. Simhadri Joseph McGill Shane McMahon Zuben E. Sauna

UT UNIVERSITY of FLORIDA

Shannon Boye Sanford Boye Tyler McCullough

Paul Gamlin C. Douglas Witherspoon

