

IND-enabling Small-Scale Guide RNA Production Under GMP for CRISPR Based Cell Therapies

Sept 23rd 2021

Keith Jarvis Senior Director, Process Chemistry

editasmedicine.com

I am an employee and shareholder of Editas Medicine

IND-enabling Small-Scale Guide RNA Production Under GMP for CRISPR Based Cell Therapies

This presentation will focus on the appropriate scale, final purity release specifications and GMP compliance for internal small-scale guide RNA production necessary to support our pre-clinical programs. It will also highlight the quality management system we have created and the guide RNA production clean rooms we have implemented at the Editas Boulder location.

Cas12a advantage and how it relates to guide RNA production

Large scale manufacturing advantage of ~40/60mers vs 100mers

Strategy to create internal guide RNA manufacturing at the appropriate scale for our programs

Quality Systems to support GMP manufacturing

In Vivo Gene Edited Medicines

Ex Vivo Gene Edited Cell Medicines

Cellular Therapy Medicines

⊘ | In Vivo Research Pipeline

Program	Discovery	Lead Optimization	IND Enabling	Early-Stage Clinical	Late-Stage Clinical	Commercial Partner	Enabling Tech	
In Vivo Gene Edited Medicines								
Ocular	_							
EDIT-101 Leber Congenital Amaurosis 10 (LCA10)								
EDIT-102: Usher Syndrome 2a (USH2A)								
Autosomal Dominant Retinitis Pigmentosa 4 (RP4)								
Other Organs								
Neurological Diseases							🍘 AskBio	

CO Ex Vivo Research Pipeline

Program	Discovery	Lead Optimization	IND Enabling	Early-Stage Clinical	Late-Stage Clinical	Commercial Partner	Enabling Tech	
Ex Vivo Gene Edited Cell Medicines								
Hemoglobinopathies								
EDIT-301: Sickle Cell Disease (SCD)								
EDIT-301: β-Thalassemia								
Cellular Therapy Med	licines							
Oncology								
αβ T Cells	-					ر ^{ال} ا Bristol Myers Squibb"		
iPSC NK (iNK) Cells								

EX VIVO	 Remove an individual's cells, edit them, then reintroduce them to the patient.
CELL THERAPY	Create a universal cell population that can be edited and then given to any patient who needs it, without needing the patient to donate cells first.

Cas12a advantage and how it relates to guide RNA production

Large scale manufacturing advantage of ~40/60mers vs 100mers

Strategy to create internal guide RNA manufacturing at the appropriate scale for our programs

Quality Systems to support GMP manufacturing

CO Cas12a/Cpf1 vs Cas9

- gRNA has differences in protospacer adjacent motifs
- Staggered DNA cuts increase efficiency and accuracy for gene repair

- Programmable protein that specifically locates, binds to and edits the DNA of targeted genes
- Pairs with a guide RNA molecule that recognizes and initiates a double stranded break at target DNA sequence

The AsCas12a Nuclease has Higher Intrinsic Specificity and Higher Sequence Fidelity in the Shorter Chemically Synthesized Guide RNA

Specificity:

Matched Target Site (20-Ns): TTTVNNNNNNNNNNNNNNNNNNN

Takeaway:

AsCas12a is more specific across matched sites in the genome in contrast to SpCas9

Guide RNA synthesis:

Chemical synthesis of gRNAs occurs in the 3' \rightarrow 5' direction and purity and yield of the entire gRNA sequence drops with increasing length

Cas12a gRNAs (~40mer) are much shorter than SpCas9 gRNAs (~100mer)

Cas9 guide is **most sensitive** to mismatches at 5' end which is the location of **lowest sequence fidelity** as this is where synthesis ends

Cas12a guide is **most sensitive** to mismatches at 3' end which is the location of **highest sequence fidelity** as this is where synthesis starts

Lack of sequence fidelity will lead to unanticipated off-target editing due to errors in RNA sequence targeting the protospacer region

Takeaway:

AsCas12a synthetic gRNAs have reduced risk of off-target editing that results from synthesis errors

References on Cas12a specificity:

Kim et al. Nat Biotech 2016, Kleinstiver et al. Nat Biotech 2016, Strohkendl et al. Mol Cell 2018, Swarts et al. Biochem Soc Trans 2019

Cas12a advantage and how it relates to guide RNA production

Large scale manufacturing advantage of ~40/60mers vs 100mers

Strategy to create internal guide RNA manufacturing at the appropriate scale for our programs

Quality Systems to support GMP manufacturing

Ex Vivo Gene Edited Cell Medicine

RNA targeting region

DNA

2'Omethyl modifications

PS/PO

~40 to 60mers

CO Effect of coupling efficiency on yield

CO | Typical Guide RNA Crude

- 631 µmol scale synthesis
- Crude gross yield: 81700 ODU
- Crude full-length purity by UPLC: 51%
- Adjusted crude yield: 41667 ODU / 1287.02 mg
- Full length mass confirmed

OLI #	Batch#	Length	(A260-blank)	PthIngth	Dil'n Fctr	Extinction Coefficient	moles/liter	uM	uL	pmol	nmol	mg
40735	D	41	0.649	1	200	420700	0.00030853	308.53	98000	30236272.88	30236.27	392.91

- 631 µmol scale synthesis
- Final yield: ~393 mg
- Final purity by UPLC: ~85%
- Full length mass confirmed

Cas12a advantage and how it relates to guide RNA production

Large scale manufacturing advantage of ~40/60mers vs 100mers

Strategy to create internal guide RNA manufacturing at the appropriate scale for our programs

Quality Systems to support GMP manufacturing

7,669 sf

Phase 1 Office Space

Phase 2 PD/AD Lab

Phase 3 GMP Manufacturing

* denotes an in-process testing point

CO | gRNA GMP Manufacturing

- Akta[™] Oligopilot[™] 100 synthesizer
- Cleavage and Deprotection within enclosed hood space
- Located in controlled PD lab space

Purification

- Gilson Reverse Phase Prep System
- Ultrafiltration
- Located in Clean Room

Aseptic Fill and Finish

- Formulation
- Sterile Filtration
- Lyophilization
- Located in Clean Room

PD Lab Process Steps:

- Synthesis
- Cleavage / Deprotection
- Crude Ultrafiltration

Cleanroom Process Steps:

- Purification
- Final Ultrafiltration
- Lyophilization
- Final Fill & Finishing

In-Process QC analysis will be completed at Editas.

Final release testing will be completed at an external contract lab.

First GMP batch initiation expected in Q1 2022

O Dual Duty: Lead Guide PD/AD and Synthesis Upstream Processing

PROCESS DEVELOPMENT/ANALYTICAL DEVELOPMENT

- Guide process optimization once a lead is declared by research
- Phosphoramidite and Reagent Prep
- Synthesis
- Cleavage and Deprotection
- Crude Ultrafiltration
- Purification
- Fraction Collection
- Final Ultrafiltration
- Lyophilization

SYNTHESIS UPSTREAM PROCESSING

- Phosphoramidite and Reagent Prep
- Synthesis
- Cleavage and Deprotection
- Crude Ultrafiltration

- CNC area (ISO 9)
- First airlock (ISO 8)
- Purification room (ISO 7)
- Fill / Finish Room (ISO 7)
- BSC (ISO 5)

Current gRNA Internal Analyses

Category	Attribute	Method	Current Acceptance Criteria		
Identity	Molecular Weight	LCMS (TM-0001)	Consistent w/ Theor. Mass ±0.2%		
Strength	Assay % w/w (anhydrous) by UV Assay	A ₂₆₀ UV/Vis (TM-0002)	Report Results		
Purity	Purity	IP-RP-UHPLC (TM-0001 – final) (TM-0003 – faster fraction method)	Final product: ≥ typically 80.0% Crude and fractions: report results		
	Total Impurities (Product Related)	IP-RP-UHPLC (TM-0001)	Report to 1 decimal: a) Early Eluting Cluster b) Late Eluting Cluster c) other peaks ≥ 0.1 %		
	Impurity Quant/ID	IP-RP-UHPLC (TM-0001) (custom slow gradient methods)	Report Results		

CO GMP guide RNA Testing (at CRO)

Category	Attribute	Method	Current Acceptance Criteria		
Cofoty	Bioburden	USP <61>	≤100 CFU/100 mg TAMC/ TYMC		
Salety	Endotoxin	USP <85>	≤ 0.25 EU/mg (to two decimal places)		
General	Appearance	Agilent QC-GNM-6005	White to off-white solid, free of visible particulates		
	рН	USP <791>	Report Results		
Identity	Molecular Weight	LCMS	Consistent with Theoretical Mass ±5 Da		
Identity	Sequence	Sanger	>99% accuracy for each base call		
Strength	Assay % w/w (anhydrous) by UV Assay	A ₂₆₀ UV/Vis	Report Results		
	Moisture Content	Karl Fisher	≤10% w/w		
Purity	Purity	IP-RP-UHPLC	≥ 80.0% Main Peak		
	Impurities (Product Related)	IP-RP-UHPLC	Report to 1 decimal each of the following: a) Early Eluting Cluster b) Late Eluting Cluster c) peaks ≥ 0.1 % area not included in other peaks		
	Sodium	Flame AA Spectroscopy	Report Results		
Impurities (Process Related)	Residual Solvents	GC-FID	2,6-lutidine: ReportAcetonitrile: ≤ 410 ppmEthanol: ≤ 5000 ppmIsopropanol: ≤ 5000 ppmPyridine: ≤ 200 ppmToluene: ≤ 890 ppm		
	Elemental Impurities (Metals)	ICP-MS	As: ≤ 19 Cd: ≤ 03 Cr: ≤ 1383 Cu: ≤ 377 Fe: Report Hg: ≤4 Mn: Report Mo: ≤ 1886 Ni: ≤ 25 Pb: ≤ 6 Ti: Report		
	Triethylamine	GC-MS	Report Results (note: first two GMP lots of OLI21036: 4, 6 ppm)		
	N,N-Dimethyl Formamide	GC-FID	Report Results (note: first two GMP lots of OLI21036: <170 ppm)		
	Dimethyl Sulfoxide	GC-FID	Report Results (note: first two GMP lots OLI21036: <0.004, <50 ppm*)		

Cas12a advantage and how it relates to guide RNA production

Large scale manufacturing advantage of ~40/60mers vs 100mers

Strategy to create internal guide RNA manufacturing at the appropriate scale for our programs

Quality Systems to support GMP manufacturing

CO GMP Systems Implementation for gRNA Production

Materials Management System

- Procure appropriate grade of materials for gRNA production
- Create Internal Material Specifications
- Procedures for receipt and disposition of incoming raw materials
- Vendor Qualification for suppliers/manufacturers

Production Records

Master Batch Records

Cleaning Program

- Evaluation of cleaning agents
- Development of cleaning procedures
- Utilization of contract cleaning company

Gowning Program and Gowning Qualification

GMP Systems Implementation for gRNA Production

Environmental Monitoring Program and Qualification

- HVAC operation
- Monitoring of particulates and air sampling
- Aseptic conditions

Equipment

• Operation, Calibration and Maintenance procedures

• IQ/OQs

Data Integrity

Data backup

Validation

- CSV for GMP equipment
- Server and network

QC

- In Process Testing performed in-house
- Method Development and Qualification
- Release testing and stability testing to occur at a contract test facility

Cas12a advantage and how it relates to guide RNA production

Large scale manufacturing advantage of \sim 40/60mers vs 100mers in terms of cost, purity and time

Strategy to create internal guide RNA manufacturing at the appropriate scale for our programs

Quality Systems to support GMP manufacturing

Internal GMP Manufacturing Accelerates our Pre-Clinical Programs

Appropriate scale customized to actual need

6 to 12 month lead time required to hold a manufacturing slot

Ability to prioritize internal and collaborative programs based on evolving research timelines

All IP retained internally (every gRNA is unique so process development efforts can turn into important IP)

CO | Process Chemistry Team Acknowledgement

Medicinal Chemistry

- Vy Le (Scientist)
- Austin McFarlin (Research Associate)

Research Scale Guide RNA Production

- McKenzie Weiss (Research Associate)
- Mark Jones (Research Associate)
- Shelby Beer (Research Associate)
- Research Associate

Process Development

- Stephen Pietrasiewicz (Scientific Technical Leader)
- Jill Fletcher (Research Associate)
- Research Associate

GMP Manufacturing

- Tim Corre (Manufacturing Lead)
- Manufacturing Associate
- Manufacturing Associate