A Mutation-Independent CRISPR/Cas9-Based ‘Knockout and Replace’ Strategy to Treat Rhodopsin-Associated Autosomal Dominant Retinitis Pigmentosa (RHO-adRP)

Zoe (Chi-Hsiu) Liu, Pavlina Wolf, Ruhong Dong, Yan Huang, Diana Tabbâa, Eugenio Marco, Brian Duke, Andrea Pinilla, Asha Pant, Racheal D’Souza, Judith Newmark, Georgia Giannoukos, Kate Zhang, Adrian Timmers, Mark S. Shearman and Mariacarmela Allocca

May 19th, 2022
The speaker and the co-authors are employees and stockholders of Editas Medicine.
Autosomal Dominant Retinitis Pigmentosa (adRP)

- An inherited autosomal dominant retinal disease leading to blindness in later life
- Symptoms:
 - Decreased night vision (nyctalopia)
 - Loss of peripheral vision (tunnel vision), and eventually significant decline in central vision
- No approved treatments
Rhodopsin-Associated adRP (RHO-adRP)

Rhodopsin (RHO)
- A light-sensitive receptor protein involved in visual phototransduction in rods
- Located in the outer segments of rods
- Approximately 30% (US and UK) of adRP caused by *RHO* dominant mutations
- Prevalence: 7,500 patients in US and 12,100 patients in EU and UK
- >150 mutations identified in the *RHO* gene cause RHO-adRP
- Dominant mutations in the *RHO* gene are toxic for the rods: progressive loss of rods followed by loss of cones

Photoreceptor structure

- Rods: light-sensitive cells
- Cones: color-sensitive cells
- Rods and cones have outer segments with light-absorbing pigments and inner segments with phototransduction machinery

Retinal Layers
- Nerve fiber layer (NFL)
- Ganglion cell layer (GCL)
- Inner plexiform layer (IPL)
- Inner nuclear layer (INL)
- Outer plexiform layer (OPL)
- Outer nuclear layer (ONL)
- Inner/outer segments of photoreceptors (IS/OS)
- Retinal pigment epithelium (RPE)
- Choroid

Normal vs. End-stage RP
- Normal retina with intact layers
- End-stage RP showing degeneration and loss of photoreceptor layers

EDIT-103: Dual AAV-Based “Knockout and Replace” Therapeutic Strategy

• Agnostic to any RHO mutation – thus will knockout any dominant gain-of-function rhodopsin mutant
• **Step 1:** Both mutant and normal endogenous *RHO* will be knocked out in the treated area
• **Step 2:** Exogenous normal *RHO* (resistant to editing) will replace endogenous *RHO*
• One-time subretinal administration aimed to restore/prevent vision loss

Details:
- gRNA is on the vector carrying *RHO*-replace thus assuring knockout takes place only in photoreceptor cells that express *RHO*-replace
- The *RHO* promoter for Cas9 and *RHO*-replace restricts therapeutic activity to rod photoreceptors

The RHO Promoter Restricts Gene Expression to Rod Photoreceptors in the Mouse Eyes

AAV: adeno-associated virus; GFP: green fluorescent protein; INL: inner nuclear layer; IS/OS: inner/outer segments of photoreceptors; ONL: outer nuclear layer; OPL: outer plexiform layer; RHO: rhodopsin
EDIT-103 is Highly Specific: No Detectable Off-Target Editing

NO OFF-TARGET EDITING AT OFF-TARGET CANDIDATES
(rhAmpSeq verification in human retina explants transduced with EDIT-103)
EDIT-103 in Humanized \(mRho^{hRHO/+} \) Mice: Demonstrates Rapid and Stable Gene Editing

Editing

- Dose escalation
- Time course

hRHO mRNA replacement

- >25% of rods are edited
- Editing rates increase in a dose-dependent manner
- Editing plateau at ~6 weeks post-injection at doses \(\geq 3E12 \) vg/ml

~8

EDIT-103 in Non-Human Primates (NHPs): Approximately 100% Editing in Transduced Photoreceptors

EDIT-103 (KO and Replace)

- **RHO promoter** → **SaCas9**
- **U6 → U6** → **RHO promoter** → **coRHO**

Knockout (KO only)

- **RHO promoter** → **SaCas9**
- **U6 → U6** → **Stuffer**

AAV: adeno-associated virus; coRHO: codon-optimized rhodopsin; gRNA: guide ribonucleic acid; KO: knockout; NHP: non-human primates; OS: oculus sinister; RHO: rhodopsin; SaCas9: *Staphylococcus aureus* CRISPR-associated protein 9; SD: standard deviation.

~100% editing (within the transduced area) in NHP

Volume: 100 µl
AAV ratio: 1:1
Time point: 13 weeks
Mean (±SD) is presented
*p<0.05, ***p<0.001

Editing (%) in rods (within the transduced area)

- **Vehicle**
- **KO**
- **EDIT-103**
- **EDIT-103**

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean (±SD)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO 3E12 (vg/ml)</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>EDIT-103 3E12 (vg/ml)</td>
<td>** ***</td>
<td></td>
</tr>
<tr>
<td>EDIT-103 6E12 (vg/ml)</td>
<td>** ***</td>
<td></td>
</tr>
</tbody>
</table>

Volume: 100 µl
AAV ratio: 1:1
Time point: 13 weeks
Mean (±SD) is presented
*p<0.05, ***p<0.001

Bleb

Macula
Parafovea
Fovea

Optic disc
EDIT-103 in NHPs: Nearly Complete Knockdown of the Endogenous RHO and Over 30% RHO Protein Replacement

RHO mRNA

- 80% and 90% knockdown of endogenous NHP RHO mRNA levels were achieved at doses of 3E12 and 6E12 vg/ml, respectively. This resulted in 90% and 100% of RHO protein knockdown.

RHO Protein

- RHO replacement mRNA levels increased with dose and resulted in >30% of RHO protein levels.

Volume: 100 µl

AAV ratio: 1:1

Time point: 13 weeks

Mean (±SD) is presented:

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001
RHO Protein Expression and Retina Morphology was Preserved in EDIT-103-Treated NHP Retinas Compared with KO-Treated Retinas

- AAV transduction in the treated groups reveals positive Cas9 genome staining
- Nearly absent RHO protein and lack of OS (yellow arrow) in the KO group
- Preservation of RHO protein, improved photoreceptor organization, and improved IS/OS morphology in the EDIT-103-treated groups

AAV: adeno-associated virus; H&E: Hematoxylin and Eosin; IS/OS: inner/outer segments of photoreceptors; KO: knockout; NHP: non-human primate; ONL: outer nuclear layer; RHO: rhodopsin

AAV ratio: 1:1; Injection volume: 100 μL; Time point: 13 weeks; Scale bars, 50 μm
Retina Function Preserved in the EDIT-103-Treated NHP Eyes Compared to the KO Only Treated Eyes

KO of endogenous RHO significantly reduced a- and b-wave amplitudes

EDIT-103 dosing preserved a- and b-wave amplitudes

ERG: electroretinogram; GCL: ganglion cell layer; INL: inner nuclear layer; IPL: inner plexiform layer; IS/OS: inner/outer segments of photoreceptors; KO: knockout; NFL: nerve fiber layer; ONL: outer nuclear layer; OPL: outer plexiform layer; RHO: rhodopsin; RPE: retinal pigment epithelium; SD: standard deviation.
EDIT-103 is a **one-time, high efficacy, mutation-agnostic gene medicine** to permanently suppress the toxic gain-of-function associated with RHO-adRP

Ex vivo: EDIT-103 shows high specificity in human retinal explants

In vivo:

- **mRho^{hRHO/+}** mouse:
 - EDIT-103 achieved **rapid** and **stable** gene editing:
 - Editing plateau at 6 weeks and is sustained until end of study (13 weeks)
 - > 25% gene editing at doses ≥ 3E12 vg/ml

- **NHP**:
 - EDIT-103 achieved nearly **100%** editing
 - >30% RHO replacement protein levels
 - Morphological and functional photoreceptor preservation
Acknowledgements

Mariacarmela Allocca
Ruhong Dong
Racheal D’Souza
Brian Duke
Georgia Giannoukos
Yan Huang
Eugenio Marco
Judith Newmark

Asha Pant
Andrea Pinilla
Mark S. Shearman
Diana Tabbaa
Adrian Timmers
Pavlina Wolf
Kate Zhang

* Alphabetical order according to last names
Thank you