

Characterization of gRNAs and Ribonucleoproteins for CRISPR Applications

Steve Wolk VP, Analytical Chemistry & Boulder Site Head Editas Medicine

Gene Therapy Analytical Development Europe 2022

Disclosures

• Steven Wolk is an employee and shareholder of Editas Medicine, Inc.

Outline

Introduction to CRISPR

- Brief Introduction to CRISPR
 - gRNAs and RNPs

Characterization of Secondary Structure and Multimer Formation

- gRNAs
 - methods for characterizing intramolecular folding and multimer formation
 - secondary structure predictions, PAGE, SEC, Ion Mobility
- CRISPR enzyme complex (RNP)
 - impact of these structures on complex formation
 - PAGE, SEC, Ion Mobility, IEX, and Intrinsic Fluorescence

Concluding Remarks and Acknowledgements

CRISPR Basics

Subtitle

RNP: The Simple View of a Cell Based Medicine

CRISPR Editing

Advantages of AsCas12a gRNA

Oligos are synthesized stepwise $3' \rightarrow 5'$

- Shorter 41mer gRNA (higher purity and yield)
 - e.g., (0.99)⁴⁰ = 67% crude yield
- Targeting sequence on the 3'-terminus of molecule
 - 3'-terminus: beginning of synthesis cycle \rightarrow highest fidelity
- Optional short proprietary 5' DNA extensions increase activity of editing in certain difficult to edit cell types

- Longer 100mer gRNA (lower purity & yield)
 - e.g., $(0.99)^{99} = 37\%$ crude yield
 - more impurities, harder to separate chromatographically
 - pegRNAs (for prime editing based on Cas9 sgRNA) are even longer (~140mers)
- Targeting sequence on the 5'-terminus of molecule
 - 5' terminus: end of synthesis cycle \rightarrow lowest fidelity

gRNA Characterization

It's complicated.....

RNA Secondary Structure

This is how we like to think the gRNA looks:Which it does in the RNP crystal structures

RNA Secondary Structure

This is how we like to think the gRNA looks:Which it does in the RNP crystal structures

The situation is likely much more complicatedGets more complicated with increasing length

gRNA Characterization

Characterization Platform

- Purity/Impurity Profile by LC/MS
 - Industry std reverse-phase, ion pairing chromatography coupled to electrospray ionization mass spectrometry (RPIP-LCMS)
 - not addressed today
- Conformational Analysis
 - secondary structure predictions
 - PAGE
 - SEC
 - ion mobility

Sequence Dependent gRNA Properties: Page Analysis

PAGE analysis of three guides that differ in the target sequence region (34 mM Tris, 66 mM HEPES, 75 mM NaCl, 2 mM MgCl₂, pH 7.5)

guide	41mer	~70mer
gRNA1	dimer	dimer
gRNA2	dimer	monomer
gRNA3	monomer	monomer

Sequence Dependent gRNA Properties: SEC Analysis

SEC analysis of three guides (~70mer versions) that differ in the target sequence region (Waters UPLC-SEC column, 150 mM NaCl, 100 Na-Phos, pH 7.4)

PAGE results for comparison:

guide	41mer	~70mer
gRNA1	dimer	dimer
gRNA2	dimer	monomer
gRNA3	monomer	monomer

Sequence Dependent gRNA Properties: IM Analysis

~70mer dimer ~70mer monomer 41

gRNA2

~70mer 41mer ~70mer 41me

gRNA3

34 mM Tris, 66 mM HEPES, 75 mM NaCl, 2 mM MgCl₂, pH 7.5

150 mM NaCl, 100 Na-Phos, pH 7.4

Sequence Dependent gRNA Properties: IM Analysis

Detection of gRNA Folding via IM

Two additional gRNAs (40mer and ~70mer)

- 25 mM (NH₄)₂CO₃, pH 8.5
- earlier IM hardware parameters (resulting in different 1/K values)

 $1/K \propto$ collisional cross-section (size)

Summary of gRNA Data

guide	Secondary structure prediction	PAGE	SEC	IM
	Vienna RNA-fold	75 mM NaCl 34 mM Tris 66 mM HEPES 2 mM MgCl ₂ pH 7.5	150 mM NaCl 100 Na-Phos pH 7.4	5 mM (NH ₄)OAc pH 7.4
gRNA2	prone to multimer formation	mostly monomer	mostly monomer (exchange observed)	all HOS
gRNA3	not prone to multimer formation	monomer	mostly monomer	monomer

RNP Characterization

It's more complicated.....

RNP: The Simple View

RNP: The Less Simple View

RNP: The Less, Less Simple View

Characterization of RNPs

Complexities of Analyzing a Noncovalent Complex of Large Biomolecules

Chromatographic Methods

- well established
- more robust/easier to validate/transfer
- more perturbing to eq.

- less routine
- · less robust/harder to validate
- often more expensive hardware
- less perturbing to eq.

Characterization of RNPs

Complexities of Analyzing a Noncovalent Complex

Wolk, GTAD Europe 2022

Characterization of RNPs – SEC Analysis

Characterization of RNPs – SEC Analysis

Impact of gRNA multimerization on RNP Complexation

Wolk, GTAD Europe 2022

Characterization of RNPs – Correlation of SEC & PAGE Data

Characterization of RNPs – 2D Analysis (SEC + PAGE)

• Lane 4-12:SEC-Fractions of RNP2 (F2-F10)

Characterization of RNPs – SEC vs. IM for RNP2

IM data in 5 mM NH₄OAc, pH 7.4

1/K	MW _{calc}	
41.97	159 kDa	
65.08	332 kDa	
85.15	519 kDa	

Characterization of RNPs – Ion Exchange Analysis

mode	gRNA	RNP	Cas
WCX	void	in between	retain
WAX	retain	in between	void
WCX-WAX	retain	retain	retain

Characterization of RNPs – Analysis by WCX-WAX

Wolk, GTAD Europe 2022

Characterization of RNPs – WCX-WAX Linearity

RNP/PRO ratio

Characterization of RNPs – WCX-WAX Accuracy

% Uncomplexed Cas12a as a function of gRNA:Cas12a ratio and gRNA Dimerization

Characterization of RNPs – WCX-WAX Accuracy

Different Plateaus - Influence of competing equilibria?

Possible Explanations:

- kinetically driven
 - on-column dissociation $k_{-3} > k_{-2}$
- thermodynamically driven
 - \circ e.g., $K_1, K_2 >> K_3$
- modeling not yet adequate to reproduce data

$$20 \rightleftharpoons 0_{2} \qquad \blacklozenge + \diamondsuit \rightleftharpoons \qquad K_{1}$$

$$P + 0 \rightleftharpoons P0 \qquad \qquad \swarrow + \diamondsuit \rightleftharpoons \qquad K_{2}$$

$$F + 0_{2} \rightleftharpoons P0_{2} \qquad \qquad \checkmark + \diamondsuit \iff \checkmark \qquad K_{3}$$

Spectroscopic Characterization of RNPs – Intrinsic Fluorescence

AsCas12a

- many fluorescent residues
- (11 Tryptophans & 56 Tyrosines)
- local electronic environments for some of these will likely change upon gRNA binding

Spectroscopic Characterization of RNPs – Intrinsic Fluorescence

Summary & Concluding Remarks

gRNA Conformers and Multimers

- formation is sequence dependent, and more likely for longer sequences
- manifestation is condition dependent (gRNA conformers, stoichiometries, dynamics, and analysis method)

RNP Complexation

- another level of complexity due to noncovalent nature of complex (conformers, stoichiometries, dynamics, and method-dependent results)
- SEC, IEX, PAGE, IM data shows that the secondary structures formed by the guides impact the complexation
 - this can potentially impact characterization assays and editing
 - some method dependence of results, which is not surprising for noncovalent complexes of large biomolecules
- Promising new methods:
 - "Combo" WCX/WAX method
 - intrinsic fluorescence
 - Characterization vs. QC/release methods

Acknowledgements

- Editas Analytical Chemistry Group
 - Jean-Noel Lemercier
 - Chrysa Latrick
 - Pranjali Ghude
 - Bryant Chica
 - Wes Mayfield
 - Bridget Moffet
- Pallavi Gambhire (Analytical Development, Cambridge)
- Jared Clark, Ananya Dubey-Kelsoe (IonDX)
- Steve Pietrasiewicz and the Editas Boulder Process Chemistry Team
- Mark Shearman (CSO)
- Bruce Eaton (CBO, previously SVP of Chemistry)

Thank You

editasmedicine.com