

# SLEEK: A Method for Highly Efficient Knock-in and Expression of Transgene Cargos for Next-Generation Cell-Based Medicines

CSHL Genome Engineering: CRISPR Frontiers 2022

Ramya Viswanathan

Editas Medicine

August 26<sup>th</sup>, 2022



### Disclosure

I am an employee and shareholder of Editas Medicine



# Efficient Knock-in Remains a Challenge in the Cell Therapy Field

T cells





AAV6: adeno-associated virus type 6; B2M; beta-2 macroglobulin; CIITA: class II major histocompatibility complex transactivator; GFP: green fluorescent protein; KI: knock-in; KO: knock-out; NGS: next generation sequencing; MHC: major histocompatibility complex; PD: programed cell death protein; RNP: ribonucleoprotein; TRAC: T-cell receptor α constant

# What if We Could Overcome This Knock-in Challenge?

SLEEK: SeLection by Essential-gene Exon Knock-in



**Editing Overview** 



Cas: CRISPR-associated protein; HDR: homology directed recombination; RNP: ribonucleoprotein; NHEJ: non-homologous end joining.

# **Reduction to Practice of SLEEK Technology**





HA: homology arm; GFP: green fluorescent protein; iPSC: induced pluripotent stem cell; KI: knock-in; KO: knock-out; SSC: side scatter; UTR: untranslated region.



# **Multicistronic Knock-in and Tunable Expression With SLEEK**



Multicistronic KI of GFP and mCherry Transgene Cargos

### Tunable Cargo Expression by KI at Different Genes





CDS: coding DNA sequence; GFP: green fluorescent protein; KIF11: kinesin family member 11; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; KI: knock-in; P2A: peptide 2A; RNP: ribonucleoprotein; TBP: TATA binding protein; UTR: untranslated region.

*iPSCs* 

# **SLEEK Achieves Best-in-Class Knock-in Rates Across Cell Types**





AAV6: adeno-associated virus type 6; Cas: CRISPR-associated protein; CAR: chimeric antigen receptors; GFP; green fluorescent protein; KI: knock-in; NK: natural killer; RNP: ribonucleoprotein; SSC: side scatter.

# SLEEK is More Efficient and Potent Than TRAC KI Gold Standard





AAV6: adeno-associated virus type 6; GFP: green fluorescent protein; HDR: homology-directed repair; KI: knock-in; ns: not significant; RNP: ribonucleoprotein; TRAC: T-cell receptor α constant.

T cells

# **SLEEK Enables the Generation of Multi-Edited Cell-Based Medicines**





AAV6: adeno-associated virus type 6; B2M; beta-2 macroglobulin; CAR: chimeric antigen receptors; CIITA: class II major histocompatibility complex transactivator; CD: cluster of differentiation; GFP; green fluorescent protein; KI: knock-in; KO: knock-out; MHC: major histocompatibility complex; NK: natural killer; SSC: side scatter; TRAC: T-cell receptor α constant; TCR: T-cell receptor.

© 2022 Editas Medicine 9

# Inhibition of Host NK Response by SLEEK KI of an NK Shield







AAV6: Adeno-associated virus type 6; B2M; beta-2 macroglobulin; CD: cluster of differentiation; HLA-E: human leukocyte antigen E; KI: knock-in; KO: knock-out; MHC: major histocompatibility complex; NK: natural killer; NKG2A: NK group 2 member A; RNP: ribonucleoprotein; TCR: T-cell receptor.

# **SLEEK is Similarly Efficient With Non-Viral DNA Templates**





SSC

AAV6: adeno-associated virus type 6; dsDNA: double stranded deoxyribonucleic acid; GFP: green fluorescent protein; SSC: side scatter; ssDNA: single stranded deoxyribonucleic acid.

# **SLEEK KI of Relevant Cargos With Non-Viral DNA Templates**







# **Engineering an iNK Cell with Enhanced Functions Using SLEEK**

Perforin **Tumor cell** Granzyme **Enhance Antibody-Dependent Cellular Cytotoxicity (ADCC)** Constitutive overexpression of CD16 through CD16 knock-in **CD16** Therapeutic Antibody e.g.: Trastuzumab (TRA) iNK cell Enhance survival and/or expansion of iNK cells Increased IL-15 signaling through knock-in of mblL-15 complex IL-15Rα + IL-15 fusion (mblL-15 complex)

#### iNK cells

### Generation of an Edited iNK Cell Through SLEEK Double Knock-in of CD16 and mblL-15 (SLEEK DKI)



ADCC: Antibody-Dependent cellular cytotoxicity; CD: cluster of differentiation; iNK: IPSC-derived natural killer cell; IL-15Rα: interleukin-15 receptor α; mbiL-15: membrane-bound IL-15; NK: natural killer.

### **SLEEK DKI iNKs Administered in Combination with Trastuzumab Induced Significant to Complete Tumor Clearance in Mice**

### iNK cells



#### Strong Tumor Clearance Attributed to Robust Expression of Our Cargos by SLEEK



DKI: double knock-in; iNK: IPSC-derived natural killer cell; IP: intraperitoneal; Iso: isotype; IVIS: in vivo imaging system; NK: natural killer; SKOV-3-luc: luciferase-expressing SKOV-3 cell line; TRA: trastuzumab; WT: wild-type.

# Our Goal was to Develop an Editing Technology that Could Fundamentally Improve the Generation of Cell-Based Medicines



- Enables >95% knock-in efficiency
- High-level, tunable cargo expression
- Achieves near-homogeneous editing
- Efficient knock-in of multicistronic cargos
- Works equivalently well with both viral and nonviral DNA cargo formats
- Robust, lineage-independent, expression of functional cargo in iPSCs to generate iNK cells with unprecedented persistence *in vivo*



### We Believe SLEEK Fundamentally Improves the Generation and Clinical Potential of Cell-based Medicines

