

Characterization of guide RNAs for CRISPR Applications

Jean-Noël Lemercier

Disclosure

• I am an employee and shareholder of Editas Medicine

What is CRISPR?

CRISPR is a gene editing technology derived from the bacterial adaptive immune system that can revise, remove, and replace genes in a highly targeted manner.

In a therapeutic context, CRISPR uses a combination of 2 types of molecules to edit disease-related genes:

RNA can be designed to guide a nuclease to any DNA sequence

Specificity: CRISPR's ability to only edit intended DNA targets and avoid off-target editing. Achieving high levels of specificity requires the right combination of nuclease and guide RNA.

A CRISPR Application for ex-vivo Cell-Based Medicine

Editas Proprietary Engineered AsCas12a CRISPR Nuclease

Editas AsCas12a is highly efficient and more specific than spCas9

*Note: Matched target sites are 20mer protospacer sequences within the human genome with compatible PAM's for different nucleases (20-Ns) ¹ Editing specificity from Gotta et al. Cold Spring Harbor 2019; ² Editing efficiency from De Dreuzy et al, ASH 2019;

Cas12a and Cas9 Require Different gRNAs

Detailed Characterization of the 2 types of gRNAs to follow

¹ Cas 12a: Image adapted from Moon et al. (2019) Trends in Biotechnology 37(8): 870-881; ² Cas 9: Image adapted from Moon et al. (2019) Trends in Biotechnology 37(8): 870-881;

Oligonucleotide Synthesis Process

- Stepwise addition of nucleotides at the 5' terminus
- Each addition is a cycle made of 3 main steps + final cleavage and deprotection

Effect of Coupling Efficiency on Yield

Yield ~ (% coupling efficiency)ⁿ where n = # of nucleotide additions $(0.99)^{40} = 67\%$ theoretical crude yield $(0.99)^{99} = 37\%$ theoretical crude yield

Longer RNA = Lower Yield

Oligonucleotide Synthesis Impurities

Impurity	Side Product
Truncations	n-x (n-1, n-2, etc.) depurination
Protecting groups	Failure to remove protecting groups
Synthesis errors	Double coupling Missed base Premature capping
Amidite impurities	Side reactions

- 1. Each synthesis step has the potential to introduce impurities
- 2. The number and complexity of impurities increase with gRNA length
- 3. Solid-phase RNA synthesis is carried out in a 3' to 5' direction

Sequence fidelity decays toward 5' terminus

Purity Characterization – Liquid Chromatography

- Reverse-phase ion-pairing chromatography (RP-IP-UPLC) (industry standard)
- HFIP in mobile phase (chromatographic resolution and mass spec compatibility)
- UV Detection at 260 nm

Analytics: Guide RNA Crudes vs. Length

Waters[®] Acquity Oligonucleotide BEH C18, 130Å, 1.7µm, 2.1 mm x 100 mm Mobile phase A: 95 mM HFIP, 14 mM TEA, 1%ACN Mobile phase B: ACN Flow rate: 0.2 ml/min Column temperature: 50 °C

The Reality of the Data: Purity Determination by LC-UV is Imperfect

LC-UV-MS is required to obtain a full overview of all gRNA related substances

LC-UV-MS purity < LC-UV Purity

Identity: Determination by Mass Spectrometry

Preparative-Scale Purification of Crude by Reverse Phase Chromatography

Cas12a and Cas9 Guide RNA Fractions

LC-UV Chromatograms at 260 nm

Guide RNA Purest Fractions: TIC vs EIC (Full-Length Product)

- Total Ion Chromatogram

- Extracted ion chromatogram for full-length product (FLP)

Guide RNA Purest Fraction: Cas9 Impurity Mining

20

Cas9 Guide RNA Purest Fraction LC/MS Analysis

© 2023 Editas Medicine 18

CONFIDENTIAL - DO NOT DISTRIBUTE

Cas9 Guide RNA Purest Fraction Deconvoluted Mass Spectrum

Cas9 gRNA Impurity Analysis Results

Mass Delta from FLP (Da)	Identity	Peak Height	%Peak Height	t Sequence	
-4288.8	?	180000	0.7	?	
-4021.6	?	202000	0.8	?	
-3574.5	n-12	224000	0.9	5'-rArU3'	
-2917.3	n-9	232000	0.9	5'-rArGrUrArU3'	
-2608.5	?	202000	0.8	?	
-2244.6	?	238000	1.0	?	
-1898.1	n-6	368000	1.5	5'-rArGrGrArGrUrArU3'	
-1553.4	n-5	316000	1.3	5'-rGrArGrGrArGrUrArU3'	
-1246.5	n-4	268000	1.1	5'-rUrGrArGrGrArGrUrArU3'	
-918.2	n-3	407000	1.6	5'-rArUrGrArGrGrArGrUrArU3'	
-611.7	n-2	382000	1.5	5'-rUrArUrGrArGrGrArGrUrArU3'	
-345.9	n-rG (internal)	347000	1.4	?	
-329.6	n-rA (internal)	302000	1.2	?	
-306.9	n-1	1180000	4.8	5'-rCrUrArUrGrArGrGrArGrUrArU3'	
0	FLP	18300000	74.0	5'-rCrCrUrArUrGrArGrGrArGrUrArU3'	
17.9	+ H ₂ O	1120000	4.5		
304.7	n+rC	160000	0.6	?	
345.5	n+rG	170000	0.7	?	
609.6	n+2	127000	0.5	?	

Cas12a Guide RNA Purest Fraction LC/MS Analysis

CONFIDENTIAL - DO NOT DISTRIBUTE

Cas12a Guide RNA Purest Fraction Deconvoluted Mass Spectrum

CONFIDENTIAL - DO NOT DISTRIBUTE

Guide RNA Purest Fraction: Cas12a

Mass Delta from FLP (Da)	Identity	Peak Height	%Peak Height	Sequence
-635.1	n-2 (-rUrA)	9.85E+05	0.5	5'-rA3'
-345.6	n-rG (internal)	8.78E+05	0.5	?
-306.3	n-1 (-rU)	4.04E+06	2.2	5'-rArA3
-224.1	2x depyrimidination	9.94E+05	0.5	?
-111.9	depyrimidination	6.41E+06	3.6	?
0	FLP	1.66E+08	92.3	5'-UrArA3'
+305.7	n+rU	3.99E+05	0.2	?
+346.2	N+rG	2.88E+05	0.2	?

Higher purity

Impurities on the 5' end -> impact on activity, not specificity

Cas12a Shorter gRNA: Higher Purity and Superior Fidelity

Improved Safety Profile due to Reduced Potential Off-Target Editing in Human Genome Caused by Errant Guide

- Targeting sequence on the 5'-terminus of molecule
- •5' terminus: end of synthesis \rightarrow lowest fidelity
- Possible problematic impurities → higher risk of catastrophic off-targets
- Possible solutions:
 - ligation of shorter RNAs (chemical or enzymatic)In vitro transcription

Acknowledgments

Pranjali Ghude Wesley Mayfield Steve Wolk Chrysa Latrick Bryant Chica Alexis Benedis McKenzie Weiss Shelby Beer Mark Jones Stephen Pietrasiewicz John Zuris Bruce Eaton

Thank you!

Questions?

CONFIDENTIAL - DO NOT DISTRIBUTE