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characterize as a gene editing tool. Specifically, Casl2a recognizes a different
protospacer-adjacent motif (PAM), uses a shorter guide RNA (gRNA) and generates
sticky ends instead of blunt ends at the cleavage site.1%34 Additionally, Casl12a is less
tolerant of mismatches within the R-loop compared to Cas9, making it a more specific
enzyme.®> While already a very specific enzyme, recent work has been performed to
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nuclease and how do they allow editing at TTTT PAM sites?
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