A transformative LDL cholesterol-lowering in vivo CRISPR gene editing medicine that functionally upregulates LDLR in mice and non-human primates

P Wrighton¹, J Newmark¹, B Diner¹, V Soman¹, T Jinadasa¹, A Apte¹, M Wu¹, S Bottega¹, M Thakkar¹, L Agosto¹, D Majithia¹, S Jambard¹, M Jaskolka¹, MP Thompson¹, P Amin¹, W Zhen¹, S Rizal¹, M Bilodeau¹, J Raghav¹, L Jansson-Fritzberg¹, M Jones¹, J Fletcher¹, M Weiss¹, E Kaye¹, B Steward¹, J Bochicchio¹, S Pietrasiewicz¹, E Marco Rubio¹, S Iovino¹, HT Phan², N Chander², M Kazemian², K Lam², S Reid², M Dinsmore¹, TM Teslovich¹, A Gupta¹, J Xie¹, L Burkly¹

¹Editas Medicine, Inc., Cambridge, MA, USA; ²Genevant Sciences Corporation, Vancouver, BC, Canada

European Society of Gene & Cell Therapy (ESGCT) Annual Meeting

October 9, 2025

Speaker disclosures

- Linda Burkly, PhD
 - Financial disclosure and potential conflict of interest: Employee of Editas Medicine

EDIT-401: A potential best-in-class, in vivo, gene editing medicine to reduce LDL-C

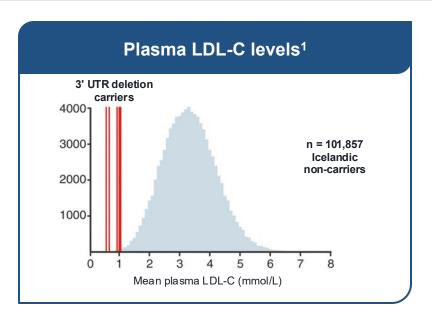
Robust preclinical efficacy data with a ≥90% mean reduction of LDL-C¹

Potential one-time treatment designed for lifelong benefit

Compelling preclinical data supporting rapid progression to human proof-of-concept

Atherosclerotic cardiovascular disease is a serious disease with significant opportunity for a transformative therapy to reduce LDL-C

ASCVD is driven by **cholesterol-rich** plaque accumulation in the arteries


- ASCVD is the primary cause of morbidity and mortality globally¹
- The link between lower LDL-C and reduced ASCVD risk is well established¹
- ~75% of patients with ASCVD do not meet LDL-C goals^{2,3}
- Standard of care requires multiple therapies and lifelong administration¹

Intensive, lifelong reduction of LDL-C provides maximal benefit^{4,5}

Therapeutic strategy of LDLR upregulation for LDL-C reduction is informed by human genetics

Seven Icelandic family members were identified as carriers of partial *LDLR* 3' UTR deletion¹

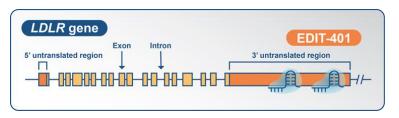
Impact on Carriers¹

LDL-C:

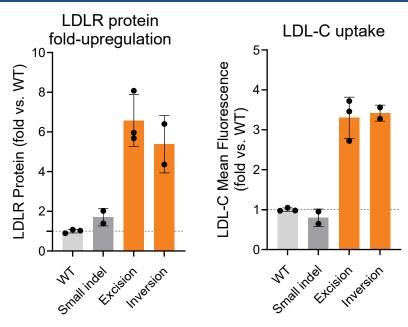
- 0.35–1.87 mmol/L (13–72 mg/dL) plasma levels
- Mean 74% lower in carriers compared to non-carriers

LDLR:

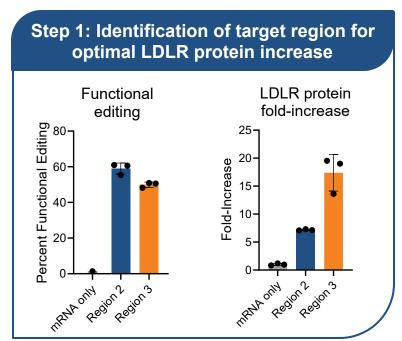
1.5- to 2.5-fold higher surface LDLR

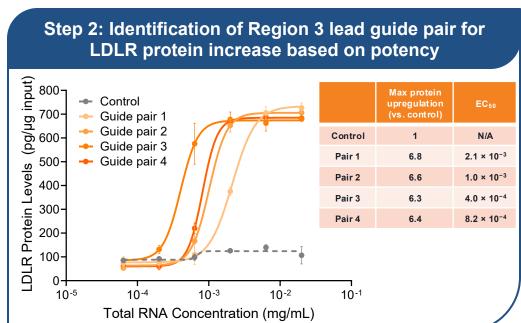

Safety:

No adverse events


CRISPR/Cas9 and dual gRNA-based strategy with LNP delivery creates a potent approach to LDLR upregulation for LDL-C reduction

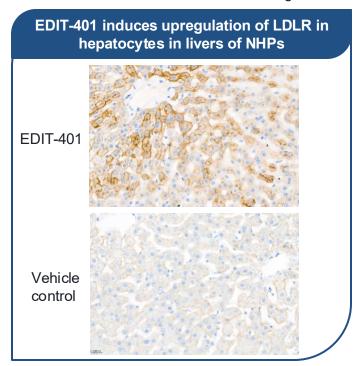
- CRISPR/Cas9 nuclease and dual gRNAs disrupt negative regulatory elements in the 3' UTR, increasing mRNA stability
- Functional editing events are the result of targeted excisions or inversions
- Non-functional editing events are small indels resulting from the action of one of the gRNAs

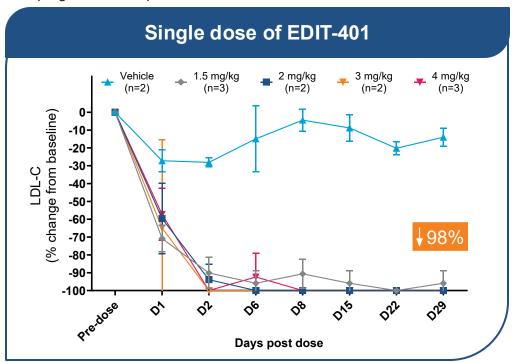

Functional edits increase LDLR protein expression and LDL-C uptake



Clonal HepG2 Cell Lines

Comprehensive in vitro screening of LDLR regulatory regions and editing cargos identified optimal therapeutic strategy

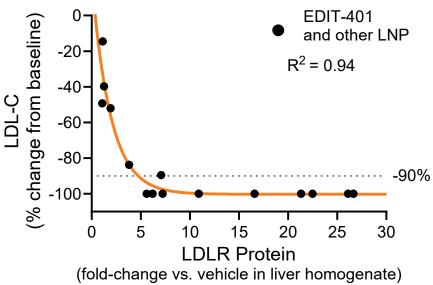



All optimization data are from primary human hepatocytes. Region 3 lead guide pair is Human-NHP cross-reactive. Step 1 delivery by RNA lipofection. Step 2 delivery by LNP.

EC₅₀, half maximal effective concentration; LDLR, low-density lipoprotein receptor; N/A, not available.

EDIT-401 achieved 98% mean LDL-C reduction by inducing LDLR upregulation in NHPs

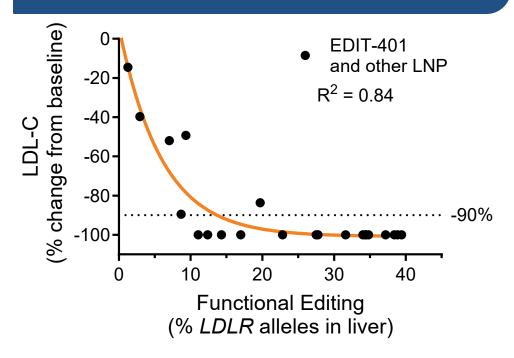
EDIT-401, CRISPR/Cas9 nuclease and dual gRNAs for LDLR upregulation encapsulated in a GalNAc LNP, administration to NHPs



Immunohistochemistry for LDLR in liver sections

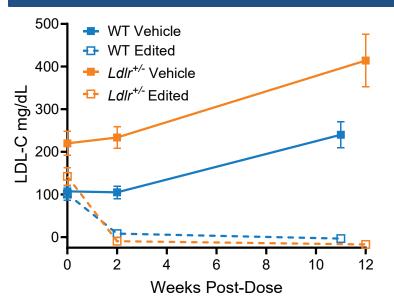
EDIT-401 therapeutic strategy enables increase in LDLR protein levels needed to achieve ≥90% LDL-C reduction in NHPs

LDL-C reduction correlated with total LDLR protein increase in the liver¹

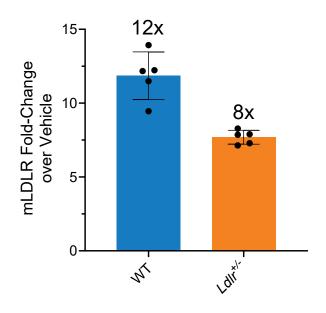

≥6-fold mean increase in LDLR protein resulted in ≥90% LDL-C reduction in NHPs with EDIT-401

^{1.} Editas Medicine. Data on file. 2. B-hPCSK9 mice. Available at: https://biocytogen.com/gene-humanized-models/b-hpcsk9-mice. Accessed September 2025. 3. Rashid S et al. Proc Natl Acad Sci U S A 2005; 102 (15): 5374-5379. 4. Thedrez A et al. Arterio scler Throm Vasc Biol 2018; 38 (3): 592-598

EDIT-401 therapeutic strategy requires only a moderate level of functional editing to demonstrate ≥90% LDL-C reduction in NHPs

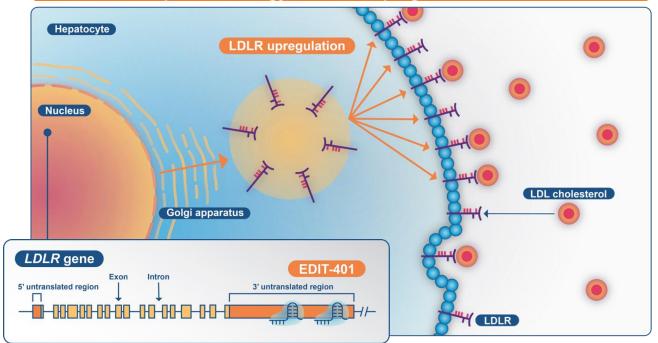

LDL-C reduction correlated with functional editing¹

≥90% LDL-C reduction requires only ~10%–40% functional editing in liver


EDIT-401 murine surrogate achieved durable ≥90% mean LDL-C reduction in *LDLR* wildtype and heterozygous loss-of-function mice with high baseline LDL-C

WT and *Ldlr*^{+/-} mice on high-fat diet administered a single dose of EDIT-401 murine surrogate

Mice on a high-fat diet had ≥3-fold elevated baseline LDL-C compared with mice on a regular-fat diet. N=5 for all WT and *Ldlr*^{+/-} groups. *Ldlr*^{+/-} Edited, 100% mean LDL-C reduction from baseline at 12 weeks; WT Edited, 99% mean LDL-C reduction from baseline at 11 weeks


LDLR protein fold-upregulation in liver

LDL-C reduction calculated as mean % reduction from baseline; LDL-C, low-density lipoprotein cholesterol; LDLR, low-density lipoprotein receptor; Ldlr, murine low-density lipoprotein receptor; WT, wild-type.

EDIT-401 differentiated mechanism of action to reduce LDL-C

EDIT-401 therapeutic strategy for LDLR upregulation

- Disruption of negative regulatory elements of the LDLR gene increases the stability of the mRNA, enabling ≥6fold increase in LDLR protein
- This amplification approach requires only a moderate level of functional editing of LDLR alleles in liver to achieve the ≥90% mean reduction in LDL-C

^{1.} Editas Medicine. Data on file. 2. B-hPCSK9 mice. Available at: https://biocytogen.com/gene-humanized-models/b-hpcsk9-mice. Accessed September 2025. 3. Rashid S et al. Proc Natl Acad Sci U S A 2005; 102 (15): 5374–5379. 4. Thedrez A et al. Arterioscler Throm Vasc Biol 2018; 38 (3): 592–598.

Conclusions

- EDIT-401 combines Editas' CRISPR and LNP expertise to deliver a differentiated therapeutic strategy of functional LDLR upregulation
- A single dose of EDIT-401 achieved ≥90% mean LDL-C reduction in NHPs and LDLR wildtype and heterozygous loss-of-function mice with high baseline LDL-C
- This differentiated therapeutic strategy achieved ≥90% mean LDL-C reduction with ≥6-fold mean increase in LDLR protein in the NHP liver, requiring only a moderate level of functional editing of *LDLR* alleles in the liver
- Durable LDL-C reduction was achieved with a single dose of EDIT-401 murine surrogate in wild-type and *Ldlr* heterozygous loss-of-function mice in a 3-month study

Thank you!

